• Title/Summary/Keyword: Circular failure

Search Result 350, Processing Time 0.042 seconds

Estimation of Overflow-Induced Pressure and Velocity on a Mound-Type Sea Dike (월류 시 마운드형태 방조제에 작용하는 압력과 유속 산정)

  • Kim, Taehyung;Yeh, Harry;Kim, Sungwoung;Choi, Myoungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.3
    • /
    • pp.5-13
    • /
    • 2015
  • Wave overflow can cause a failure of sea dike structure. Based on the results of the field surveys on mound-type sea dike, the failure of vicinity of crown and the scouring of toe at the landward was revealed as the most representative failure example. One of the main factors related to this failure pattern is overflow-induced pressure and velocity. Thus, in this study the analytical equations which can determine the pressure and the velocity induced by overflow in sea dike were proposed and verified. To accomplish this, assumed that the flow is quasi-steady and irrotational, and concentric circular streamlines around the vicinity of crown and toe of the sea dike. Flow was assumed as critical state and Bernoulli equation was used to develop the equations that can determine the pressure and velocity at the vicinity of crown and toe of the sea dike. Using these equations, the pressure and the velocity were calculated in condition of various overflow depths and radiuses of circular streamline. Based on the calculation results, while a negative pressure was occurred at the vicinity of crown, a significant amount of positive pressure occurred at the toe. The existence of flow-induced shear stresses was also confirmed. In addition, the limitation of the proposed equations was discussed.

Evaluation of Shear Capacity Curve Model for Seismic Design (내진설계를 위한 전단성능곡선 모델의 평가)

  • Ko, Seong-Hyun;Lee, Jae-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.186-189
    • /
    • 2006
  • Since the columns with flexure-shear failure have lower ductility than those with flexural failure, shear capacity curve models shall be applied as well as flexural capacity curve in order to determine ultimate displacement for seismic design or performance evaluation. In this paper, a proposed modified shear capacity curve model is compared with the other models such as the CALTRANS model, Aschheim et al.'s model, and Priestley et al.'s model. Four shear capacity curve models are applied to the 4 full scale and 7 small scale circular bridge column test results and the accuracy of each model is discussed. It may not be fully adequate to drive a final decision from the application to the limited number of test results, however the proposed model provides the better prediction of failure mode and ultimate displacement than the other models for the selected column test results.

  • PDF

The Failure Mode Analysis of Machine Tools using Performance Test and Development of Web-based Analysis Program (공작기계의 성능평가를 통한 고장모드해석과 웹 프로그램 개발)

  • 이수훈;김종수;박연우;송준엽;이승우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.435-439
    • /
    • 2002
  • In view of reliability assessment, the failure mode analysis by performance tests for machine tools is researched in this study. First, the error analysis with circular movement test data is studied. The various errors and their origins are analyzed by the error equations and then related parts and failure modes are investigated. Second, This paper deals with analysis of vibration testing for machine tools spindle. The various frequency components are classified by fourier transform and order analysis. The simple measuring devices and web-based analysis programs for each test are also developed.

  • PDF

Strength Prediction of Bolted Woven Composite Joint Using Characteristic Length (특성 길이를 이용한 평직 복합재 볼트 체결부의 강도 예측)

  • Park Seung-Bum;Byun, Joon-Hyung;Ahn, Kook-Chan
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.8-15
    • /
    • 2003
  • A study on predicting the joint strength of mechanically fastened woven glass/epoxy composite has been performed. An experimental and numerical study were carried out to determine the characteristic length and joint strength of composite joint. The characteristic lengths for tension and compression were determined from the tensile and compressive test with a hole respectively. The characteristic lengths were evaluated by applying the point stress failure criterion to a specimen containing a hole at the center subjected to tensile loading and a specimen containing a half circular notch at the center subjected to compressive load. The joint strength was evaluated by the Tsai-Wu and Yamada-Sun failure criterion on the characteristic curve. The predicted results of the joint strength were compared with experimental results.

A Case Study on the Failure of Intake and Exhaust Valves for Marine Diesel Engines

  • Kim Jong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.801-807
    • /
    • 2005
  • Any failure of intake and exhaust valves of marine diesel engine must be regarded as serious, and any steps which can be taken to prevent such failure are desirable. The purposes of this study is to investigate and to analyse the failure causes of intake and exhaust valves for marine diesel engine during sea trial after completion of overhauling. In this study, to analyse the failure causes, we have carried out on board inspection, fractography test and discussion based on the specimen and repairing report provided by the ship owner. From the results of above inspection, test and discussion, it has been considered reasonable to conclude that the causes of damaged valves of the ship are as follow ; 1) During operation, the stick or seizure of valve spindle occurred and hence the movement of exhaust valve spindle was to be resisted and subsequently the engine was to be operated under an unappropriated valve timing and the exhaust valve sustained the repeated loads exceeding the fatigue strength of valve material. 2) By the loads above described, the fatigue fracture was initiated at the structural noncontinuous part of exhaust valve spindle, and then the valve head was finally fractured and dropped in the cylinder. 3) The fractured exhaust valve head impacted the intake valve at various direction to be bent or damaged.

Strength characteristics and fracture evolution of rock with different shapes inclusions based on particle flow code

  • Xia, Zhi G.;Chen, Shao J.;Liu, Xing Z.;Sun, Run
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.461-473
    • /
    • 2020
  • Natural rock mass contains defects of different shapes, usually filled with inclusions such as clay or gravel. The presence of inclusions affects the failure characteristics and mechanical properties of rock mass. In this study, the strength and failure characteristics of rock with inclusions were studied using the particle flow code under uniaxial compression. The results show that the presence of inclusions not only improves the mechanical properties of rock with defects but also increases the bearing capacity of rock. Circular inclusion has the most obvious effect on improving model strength. The inclusions affect the stress distribution, development of initial crack, change in crack propagation characteristics, and failure mode of rock. In defect models, concentration area of the maximum tensile stress is generated at the top and bottom of defect, and the maximum compressive stress is distributed on the left and right sides of defect. In filled models, the tensile stress and compressive stress are uniformly distributed. Failing mode of defect models is mainly tensile failure, while that of filled models is mainly shear failure.

Numerical simulation and countermeasure on upheaval generation in the road caused by sliding of a slope (사면활동으로 야기된 도로부 융기발생에 대한 수치해석 및 고찰)

  • Kim, Seung-Hee;Rhee, Jong-Hyun;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.833-841
    • /
    • 2008
  • Recently, the upheaval generation in the road which is under service had been reported. Due to the upheaval generation, total 4 lanes were forced to curtail to 3 lanes, and traffic was delayed. In normal situation of cut-slopes in korea, that condition is hard to detect since most cut-slopes contain discontinuous material, that is rock. Common collapses in rock-slopes is wedge failure, plane failure and toppling failure which is all individual mechanism of discontinuous rock mass. In contrast, such upheaval in the road in front of cut-slope can be generated only when circular movement is triggered within the cut-slope. In this sense, rock-slopes barely show any kind of movement in the road locates at the front of them. Numerical analysis is general method in simulation of slope displacement and evaluation of safety. However, numerical analysis programs which are related with rock-slopes are not able to simulate such upheaval movement because that programs are based on discontinuous modeling mechanism. In addition, although numerical analysis programs which are based on FEM/FDM and thus utilize continuous modeling mechanism are able to simulate circular movement and upheaval situation, they have weakness in reflecting discontinuities of rock-slope itself. In this study, detailed in-site investigation and numerical analysis based on in-site condition were performed in order to expect upheaval movement in the road. In this procedure, the FLAC program which uses continuous modeling method was utilized, and new approach reflecting discontinuity developed toward the road with a ubiquitous joint model was tried to derive reliable analysis result.

  • PDF

Axial capacity of reactive powder concrete filled steel tube columns with two load conditions

  • Wang, Qiuwei;Shi, Qingxuan;Xu, Zhaodong;He, Hanxin
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.13-25
    • /
    • 2019
  • Reactive powder concrete (RPC) is a type of ultra-high strength concrete that has a relatively high brittleness. However, its ductility can be improved by confinement, and the use of RPC in composite RPC filled steel tube columns has become an important subject of research in recent years. This paper aims to present an experimental study of axial capacity calculation of RPC filled circular steel tube columns. Twenty short columns under axial compression were tested and information on their failure patterns, deformation performance, confinement mechanism and load capacity were presented. The effects of load conditions, diameter-thickness ratio and compressive strength of RPC on the axial behavior were further discussed. The experimental results show that: (1) specimens display drum-shaped failure or shear failure respectively with different confinement coefficients, and the load capacity of most specimens increases after the peak load; (2) the steel tube only provides lateral confinement in the elastic-plastic stage for fully loaded specimens, while the confinement effect from steel tube initials at the set of loading for partially loaded specimens; (3) confinement increases the load capacity of specimens by 3% to 38%, and this increase is more pronounced as the confinement coefficient becomes larger; (4) the residual capacity-to-ultimate capacity ratio is larger than 0.75 for test specimens, thus identifying the composite columns have good ductility. The working mechanism and force model of the composite columns were analyzed, and based on the twin-shear unified strength theory, calculation methods of axial capacity for columns with two load conditions were established.

The comparison between NBD test results and SCB test results using experimental test and numerical simulation

  • Fu, Jinwei;Sarfarazi, Vahab;Haeri, Hadi;Naderi, K.;Fatehi Marji, Mohammad;Guo, Mengdi
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.83-99
    • /
    • 2022
  • The two, NBD and SCB tests using gypsum circular discs each containing a single notch have been experimentally accomplished in a rock mechanics laboratory. These specimens have also been numerically modelled by a two-dimensional particle flow which is based on Discrete Element Method (DEM). Each testing specimen had a thickness of 5 cm with 10 cm in diameter. The specimens' lengths varied as 2, 3, and 4 cm; and the specimens' notch angles varied as 0°, 45° and 90°. Similar semi-circular gypsum specimens were also prepared each contained one edge notch with angles 0° or 45°. The uniaxial testing machine was used to perform the experimental tests for both NBD and SCB gypsum specimens. At the same time, the numerical simulation of these tests were performed by PFC2D. The experimental results showed that the failure mechanism of rocks is mainly affected by the orientations of joints with respect to the loading directions. The failure mechanism and fracturing patterns of the gypsum specimens are directly related to the final failure loading. It has been shown that the number of induced tensile cracks showing the specimens' tensile behavior, and increases by decreasing the length and angle of joints. It should be noted that the fracture toughness of rocks' specimens obtained by NBD tests was higher than that of the SCB tests. The fracture toughness of rocks usually increases with the increasing of joints' angles but increasing the joints' lengths do not change the fracture toughness. The numerical solutions and the experimental results for both NDB and SCB tests give nearly similar fracture patterns during the loading process.

Acoustic emission characteristics during damage-zone formation around a circular opening

  • Jong-Won Lee;Eui-Seob Park;Junhyung Choi;Tae-Min Oh;Min-Jun Kim
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.511-525
    • /
    • 2024
  • Underground openings significantly affect the mechanical stability of underground spaces and create damaged zones. This study investigated the acoustic emission (AE) characteristics associated with the formation of damaged zones around circular openings. Uniaxial compression experiments were conducted on three types of rock specimens, namely, granite (GN-1 and GN-2), gabbro (GB), and slate (SL), containing a circular opening. AE and digital image correlation (DIC) techniques were used to monitor and evaluate the damaged zones near the circular openings. The AE characteristics were evaluated using AE parameters, including count, energy, amplitude, average frequency, and RA value. The DIC results revealed that the estimated diameters of the damaged zones of GN-1, GN-2, GB, and SL were 1.66D, 1.53D, 1.49D, and 1.9D, respectively. The average displacements at the surface of the damaged zones for these specimens were 0.814, 0.786, 0.661, and 0.673 mm, respectively, thus demonstrating a strong correlation with Young's modulus. The AE analysis with DIC revealed that tensile failure occurred in the direction parallel to the maximum compression axis as the load increased. Thus, this study provides fundamental data for a comprehensive analysis of damaged zones in underground openings and will facilitate the optimization of rock engineering projects and safety assessments thereof.