• Title/Summary/Keyword: Circular Shape Object

Search Result 22, Processing Time 0.028 seconds

A Study on the Comparison of 2-D Circular Object Tracking Algorithm Using Vision System (비젼 시스템을 이용한 2-D 원형 물체 추적 알고리즘의 비교에 관한 연구)

  • Han, Kyu-Bum;Kim, Jung-Hoon;Baek, Yoon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.125-131
    • /
    • 1999
  • In this paper, the algorithms which can track the two dimensional moving circular object using simple vision system are described. In order to track the moving object, the process of finding the object feature points - such as centroid of the object, corner points, area - is indispensable. With the assumption of two-dimensional circular moving object, the centroid of the circular object is computed from three points on the object circumference. Different kinds of algorithms for computing three edge points - simple x directional detection method, stick method. T-shape method are suggested. Through the computer simulation and experiments, three algorithms are compared from the viewpoint of detection accuracy and computational time efficiency.

  • PDF

Object Tracking of Mobile Robots using Hough Transform (Hough Transform을 이용한 이동 로봇의 물체 추적)

  • Jung, Kyung-Kwon;Shin, Heon-Soo;Lee, Hyun-Kwan;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.819-822
    • /
    • 2007
  • In this paper, we propose an object-tracking of mobile robots using CHT(Circular Hough transform) algorithm. The proposed method extracts the region of moving objects using 1-D projection algorithm, and detects circular objects using CHT. In order to verify the effectiveness of the proposed tracking method, we perform experiments of ball shape object-tracking using mobile robot based on ARM processor with CMOS camera.

  • PDF

Image Segmentation Algorithm Based on Geometric Information of Circular Shape Object (원형객체의 기하학적 정보를 이용한 영상분할 알고리즘)

  • Eun, Sung-Jong;WhangBo, Taeg-Keun
    • Journal of Internet Computing and Services
    • /
    • v.10 no.6
    • /
    • pp.99-111
    • /
    • 2009
  • The result of Image segmentation, an indispensable process in image processing, significantly affects the analysis of an image. Despite the significance of image segmentation, it produces some problems when the variation of pixel values is large, or the boundary between background and an object is not clear. Also, these problems occur frequently when many objects in an image are placed very close by. In this paper, when the shape of objects in an image is circular, we proposed an algorithm which segment an each object in an image using the geometric characteristic of circular shape. The proposed algorithm is composed of 4 steps. First is the boundary edge extraction of whole object. Second step is to find the candidate points for further segmentation using the boundary edge in the first step. Calculating the representative circles using the candidate points is the third step. Final step is to draw the line connecting the overlapped points produced by the several erosions and dilations of the representative circles. To verify the efficiency of the proposed algorithm, the algorithm is compared with the three well-known cell segmentation algorithms. Comparison is conducted by the number of segmented region and the correctness of the inner segment line. As the result, the proposed algorithm is better than the well-known algorithms in both the number of segmented region and the correctness of the inner segment line by 16.7% and 21.8%, respectively.

  • PDF

A Method for Extracting Shape and Position of an Object using Partial M-array

  • Kaba, K.;Kashiwagi, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.262-265
    • /
    • 1999
  • This paper describes a new method for object extraction necessary for image tracking systems. The extraction method which this paper proposes here is that an M-array is set between a camera and the object and the obtained image including the object and M-array is pro-cessed for extracting the object. The image processing utilizes a characteristic of M-array which is robust to noise. When an M-array is overlapped on the object in background image, the object woud have a part of M-array, which is detected by use of partial correlation between the mosaic image of M-array and the standard M-array. Thus the shape and position of the object are extracted by extracting a common domain of width of high correlation value. Experiments are carried out by using an actual photo of Kumamoto city taken from an airplane as background, and by use of a rectangular and circular object. The results of experiment show a wide application of this method for practical image tracking systems.

  • PDF

A new object recognition algorithm using generalized incremental circle transform

  • Han, Dong-Il;You, Bum-Jae;Zeungnam Bien
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.933-938
    • /
    • 1990
  • A method of recognizing 2-dimensional polygonal object is proposed by using a concept of generalized incremental circle transform. The generalized incremental circle transform, which maps boundaries of an object into a circular disc, represents efficiently the shape of the boundaries that are obtained from digirized binary images of the objects. It is proved that the generalized incremental circle transform of an object is invariant to object translation, rotation, and size, and can be used as feature information for recognizing two dimensional polygonal object efficiently.

  • PDF

Classification of Man-Made and Natural Object Images in Color Images

  • Park, Chang-Min;Gu, Kyung-Mo;Kim, Sung-Young;Kim, Min-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1657-1664
    • /
    • 2004
  • We propose a method that classifies images into two object types man-made and natural objects. A central object is extracted from each image by using central object extraction method[1] before classification. A central object in an images defined as a set of regions that lies around center of the image and has significant color distribution against its surrounding. We define three measures to classify the object images. The first measure is energy of edge direction histogram. The energy is calculated based on the direction of only non-circular edges. The second measure is an energy difference along directions in Gabor filter dictionary. Maximum and minimum energy along directions in Gabor filter dictionary are selected and the energy difference is computed as the ratio of the maximum to the minimum value. The last one is a shape of an object, which is also represented by Gabor filter dictionary. Gabor filter dictionary for the shape of an object differs from the one for the texture in an object in which the former is computed from a binarized object image. Each measure is combined by using majority rule tin which decisions are made by the majority. A test with 600 images shows a classification accuracy of 86%.

  • PDF

Pottery Modeling Using Circular Sector Element Method (부채꼴 요소법을 이용한 3 차원 도자기 모델링)

  • Lee, Jae-Bong;Han, Gab-Jong;Choi, Seung-Moon
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.78-84
    • /
    • 2008
  • This paper presents a fast modeling technique of virtual pottery using force feedback based on a circular sector element method. Previous techniques for simulating deformable objects such as finite element method (FEM) are limited in real-time haptic rendering due to their complexity and expensive computational cost. In our model, circular sector elements which fully represent features of pottery's shape are closely gathered and piled together. This allows efficient deformable object modeling through a decrease in the number of elements and reducing computational cost.

  • PDF

A study on object recognition using morphological shape decomposition

  • Ahn, Chang-Sun;Eum, Kyoung-Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.185-191
    • /
    • 1999
  • Mathematical morphology based on set theory has been applied to various areas in image processing. Pitas proposed a object recognition algorithm using Morphological Shape Decomposition(MSD), and a new representation scheme called Morphological Shape Representation(MSR). The Pitas's algorithm is a simple and adequate approach to recognize objects that are rotated 45 degree-units with respect to the model object. However, this recognition scheme fails in case of random rotation. This disadvantage may be compensated by defining small angle increments. However, this solution may greatly increase computational complexity because the smaller the step makes more number of rotations to be necessary. In this paper, we propose a new method for object recognition based on MSD. The first step of our method decomposes a binary shape into a union of simple binary shapes, and then a new tree structure is constructed which ran represent the relations of binary shapes in an object. finally, we obtain the feature informations invariant to the rotation, translation, and scaling from the tree and calculate matching scores using efficient matching measure. Because our method does not need to rotate the object to be tested, it could be more efficient than Pitas's one. MSR has an intricate structure so that it might be difficult to calculate matching scores even for a little complex object. But our tree has simpler structure than MSR, and easier to calculated the matchng score. We experimented 20 test images scaled, rotated, and translated versions of five kinds of automobile images. The simulation result using octagonal structure elements shows 95% correct recognition rate. The experimental results using approximated circular structure elements are examined. Also, the effect of noise on MSR scheme is considered.

  • PDF

The Development of Efficient Multimedia Retrieval System of the Object-Based using the Hippocampal Neural Network (해마신경망을 이용한 관심 객체 기반의 효율적인 멀티미디어 검색 시스템의 개발)

  • Jeong Seok-Hoon;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.57-64
    • /
    • 2006
  • Tn this paper, We propose a user friendly object-based multimedia retrieval system using the HCNN(HippoCampus Neural Network. Most existing approaches to content-based retrieval rely on query by example or user based low-level features such as color, shape, texture. In this paper we perform a scene change detection and key frame extraction for the compressed video stream that is video compression standard such as MPEG. We propose a method for automatic color object extraction and ACE(Adaptive Circular filter and Edge) of content-based multimedia retrieval system. And we compose multimedia retrieval system after learned by the HCNN such extracted features. Proposed HCNN makes an adaptive real-time content-based multimedia retrieval system using excitatory teaming method that forwards important features to long-term memories and inhibitory learning method that forwards unimportant features to short-term memories controlled by impression.

Numerical determination of wind forces acting on structural elements in the shape of a curved pipe

  • Padewska-Jurczak, Agnieszka;Szczepaniak, Piotr;Bulinski, Zbigniew
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • This paper reports the study on development and verification of numerical models and analyzes of flow at high speed around structural elements in the shape of a curved pipe (e.g., a fragment of a water slide). Possibility of engineering estimation of wind forces acting on an object in the shape of a helix is presented, using relationships concerning toroidal and cylindrical elements. Determination of useful engineering parameters (such as aerodynamic forces, pressure distribution, and air velocity field) is presented, impossible to obtain from the existing standard EN 1991-1-4 (the so-called wind standard). For this purpose, flow at high speed around a torus and helix, arranged both near planar surface and high above it, was analyzed. Analyzes begin with the flow around a cylinder. This is the simplest object with a circular cross-section and at the same time the most studied in the literature. Based on this model, more complex models are analyzed: first in the shape of half of a torus, next in the shape of a helix.