A multi-purpose polariscope is developed by applying an electro-mechanical control system to a diffused transmission-type circular polariscope. A conventional polariscope is only good for manual control of optical elements. The new polariscope system is devised to be controlled through two stepping motors and two magnetic clutches. The developed system has both functions of a conventional linear- and circular-polariscope. The new polariscope can be used not only for the point-wise measurement using Tardy compensation technique but also for the full-field fringe analysis using conventional and/or phase measuring techniques, if applicable.
This paper describes the construction of a circular polariscope. Generally, a circular polariscope contains four optical elements and a light source. The first element following the light source is called the linear polarizer. It converts the ordinary light into plane-polarized light. The second element is a quarter wave plate which converts the plane-polarized light into circularly polarized light. Following the quarter wave plate, a specimen made of transparent photoelastic material is located in a loading device. The second quarter wave plate is set and the last element is the analyzer. These polarizing elements, two quarter wave plates and two linear polarizing filters, were purchased from the USA. Frames and other structures for holding polarizing filters were machined and assembled to be rotated. Light box, which includes four incandescent lamps and two sodium-vapor lamps, was made. In order to proof the function of the newly built polariscope, Tardy compensation test was applied to a rectangular shaped specimen made of poly-carbonate material (PSM 1). The error of the fringe constant, which was measured by the newly built polariscope, was within 4.4 percent compared to the standard value of this material. It is possible to make a good quality of polariscope if accurate polarizing filters will be used.
This paper describes the construction of a circular polariscope. Generally, a circular polariscope contains four optical elements and a light source. The first element following the light source is called the polarizer. It converts the ordinary light into plane-polarized light. The second element is a quarter wave plate which converts the plane-polarized light into circularly polarized light. Following the quarter wave plate, a specimen made of transparent photoelastic material is located in a loading device. The second quarter wave plate is set and the last element is the analyzer. These polarizing elements, two quarter wave plates and two polarizing filters, were purchased from the USA. Frames and other structures for holding polarizing filters were machined and assembled to be rotated. Light box, which include four incandescent lamps and two sodium-vapor lamps, was made. In order to proof the function of the newly built polariscope, Tardy compensation test was applied to a rectangular shaped specimen made of poly-carbonate material (PSM1). The error of the fringe constant, which was measured by the newly built polariscope, was within 4.4 percent compared to the standard value of this material. It is possible to make a good quality of polariscope if accurate polarizing filters will be used.
A new polariscope system involving two rotating optical elements and a digital camera for whole field fringe analysis allows automated data to be acquired quickly and efficiently. The developed phase measuring technique that uses eight images through a circular polariscope is presented for the digital measurement of isochromatics and isoclinics, respectively, from photoelastic fringes in a circular disk under diametric compression. Isochromatics can directly be obtained using wrapped isoclinic phases calculated by the arc tangent operator which is the four-quadrant operator from -$\pi$ to $\pi$. It is not required to unwrap isoclinic phases for the calculations of isochromatics. Unwrapped isoclinics are directly determined from isochromatic parameters. Distributions of digitally determined isoclinics are in close agreement to manual measurements. The errors which would appear in unwrapping process of isoclinics can be avoided in the determination of isochromatics.
The method of photoelasticity allows one to obtain principal stress differences and principal stress directions in a photoelastic model. In the classical approach, the photoelastic parameters are measured manually point by point. This is time consuming and requires skill in the identification and measurement of photoelastic data. Fringe phase shifting method has been recently developed and widely used to measure and analyze fringe data in photo-mechanics. This paper presents the test results of photoelastic fringe phase shifting method for the stress analysis of a curved beam plate. The technique used here requires four phase stepped photoelastic images obtained from a circular polariscope by rotating the analyzer at 0˚, 45˚, 90˚ and 135˚. Experimental results are compared with those of ANSYS and calculated by the simple beam theory. Good agreement among the results can be observed.
Photoelasticity is widely and conveniently used methods for whole field stress analysis. In this paper, 8-step photoelastic phase shifting method was performed by using a multi-purpose polariscope to measure the fringe orders along a specified line on the specimen containing a square hole. The material of the specimen is made of Polycarbonate. The measurement results by 8-step phase shifting method were compared with the those calculated by ABAQUS.
렌즈에 가한 응력을 측정하기 위한 편광기는 1/4 파장판-편광판으로 구성하였고, 각 단계별 광파의 $E_1$, $E_2$의 성분을 분석하였다. 주 응력차 ${\sigma}_1-{\sigma}_2$는 무늬 차수(N)가 시료 각 점에서 분석되고, 시료의 광축은 주 응력 방향과 일치하는 것으로부터 2 차원 모델을 결정할 수 있다. 광파에 작용하는 복굴절성과 위상지연은 주 응력차 (${\sigma}_1-{\sigma}_2$)에 비례하고, 최종 광파의 세기는 $sin^2({\Delta}/2)$에 비례하고, ${\Delta}/2=n^{\pi}$ (n=0, 1, 2, ...)일 때 소멸 무늬인 흡광이 일어난다. 실험적 결과로는 렌즈의 외부 응력의 크기에 따라 흡광 band가 이동한다.
광탄성법은 투명한 물체에 힘을 가하면 복굴절 현상이 나타나며, 편광기에 의해 등색 및 등경프린지가 나타난다. 등색프린지를 이용하여 주응력차이 또는 평면상 전단응력을 계산할 수 있으며, 등경프린지에 의해 주응력 방향을 결정할 수 있다. 재래식 광탄성법에서는 특정한 위치에서 프린지를 개별적으로 측정해야 되는 불편한 점이 있어, 디지털 영상처리에 의해 광탄성 프린지로부터 전체적인 응력장을 해석할 수 있도록 프린지이동에 의한 위상이동법이 개발되었다. 프린지 위상이동법은 원형편광기에서 검광자를 $0^{\circ}$, $45^{\circ}$, $90^{\circ}$ 및 $135^{\circ}$회전시켜 프린지가 이동된 4개의 영상을 얻고, 이들로부터 위상차이로 나타나는 프린지분포를 측정한다. 본 연구에서는 프린지 위상이동법에 관한 광학적인 이론을 이용하여 압축하중을 받는 원형디스크의 프린지분포를 위상이동법으로 측정한 후 이론 값과 비교하였다. 또한, 인장하중을 받는 에지균열판의 응력분포 해석에 프린지 위상이동법을 적용하였다. 실험결과, 프린지 위상이동법으로 측정한 결과는 유한요소 해석 결과와 잘 일치하였다. 광탄성에서 위상이동법은 등경선과 평행하거나 직교하는 선상에서 응력 분포를 용이하게 측정할 수 있으나, 일반적인 프린지 해석시 프린지 위상이동법을 적용하면 오차가 포함될 수 있다.
The effect of reinforced circular hole in a flat plate under general biaxial loading conditions is considered. The reinforcement is achieved by attaching a circular ring of uniform rectangular cross section along the boundary of the hole. This investigation includes a theoretical solution and an experimental conformation. In the theoretical analysis, Gurney's method is used to obtain a solution for the stress distribution and the solution is expressed in a general form, so that it can be applicable to the case of general biaxial loading and general values of Poisson's ratios. In the experimental work a systematic series of photoelastic models, as shown in Fig.5 and Table 1, were analyzed on polariscope. The experimental results were in good agreement with the theoretical ones, as shown in Fig.8 and 9. The conclusions derived are as follows: 1) The theoretical results, given in Eq. $(1){\sim}(5)$, are sufficient in accuracy for the engineering design purpose. 2) The stress concentration factor decreases as the ratio n increases, but not significant beyond n=3. 3) The stress concentration factor increase as the ratio m increases, but not significant below m=0.7.
본 연구에서는 TV 유리패널의 등색프린지 분포를 광탄성 4단계 위상이동법에 의하여 측정한 실험결과를 제시하였다. 재래식 광탄성법에서는 등색 프린지 차수를 각각의 점에 대해서 수작업으로 측정한다. 4단계 위상이동법을 이용하기 위하여, 원형편광기 요소들은 등색프린지분포가 측정되는 지점 혹은 선상을 따라 등경각 방향에 일치시켜야 한다. 4단계 위상이동법은 원형편광기의 검광판을 $0^{\circ},\;45^{\circ},\;90^{\circ}$ 및 $135^{\circ}$ 회전시켜 얻은 4개의 영상을 이용한다. 4단계 위상이동법을 적용하기 위해서는 등경각이 측정하고자 하는 지점이나 선상에 일치하도록 편광기 요소를 정렬시켜야 한다. 4단계 위상이동법으로부터 얻은 실험결과는 세나르몽보간법에 의해 측정한 값과 비교한 결과 서로 잘 일치하였다. 또한, TV 유리패널의 열처리 전 후에 등색프린지 분포를 비교하였다. 측정 결과, TV 유리패널의 열처리 전 후의 등색프린지 차수는 약 2배정도 차이가 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.