• Title/Summary/Keyword: Circuit analysis

Search Result 3,940, Processing Time 0.033 seconds

Analysis of Photovoltaic Performance Improvement of Cu2Zn1-xCdxSn(SxSe1-x)4 Thin Film Solar Cells by Controlling Cd2+ Element Alloying Time Using CBD Method (CBD 공법을 이용하여 Cd2+ 원소 Alloying 시간을 조절한 Cu2Zn1-xCdxSn(SxSe1-x)4 박막 태양전지의 광전지 성능 향상 분석)

  • Sang Woo, Park;Suyoung, Jang;Jun Sung, Jang;Jin Hyeok, Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.481-488
    • /
    • 2022
  • The Cu2ZnSn(SxSe1-x)4 (CZTSSe) absorbers are promising thin film solar cells (TFSCs) materials, to replace existing Cu(In,Ga)Se2 (CIGS) and CdTe photovoltaic technology. However, the best reported efficiency for a CZTSSe device, of 13.6 %, is still too low for commercial use. Recently, partially replacing the Zn2+ element with a Cd2+element has attracting attention as one of the promising strategies for improving the photovoltaic characteristics of the CZTSSe TFSCs. Cd2+ elements are known to improve the grain size of the CZTSSe absorber thin films and improve optoelectronic properties by suppressing potential defects, causing short-circuit current (Jsc) loss. In this study, the structural, compositional, and morphological characteristics of CZTSSe and CZCTSSe thin films were investigated using X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), and Field-emission scanning electron microscopy (FE-SEM), respectively. The FE-SEM images revealed that the grain size improved with increasing Cd2+ alloying in the CZTSSe thin films. Moreover, there was a slight decrease in small grain distribution as well as voids near the CZTSSe/Mo interface after Cd2+ alloying. The solar cells prepared using the most promising CZTSSe absorber thin films with Cd2+ alloying (8 min. 30 sec.) exhibited a power conversion efficiency (PCE) of 9.33 %, Jsc of 34.0 mA/cm2, and fill factor (FF) of 62.7 %, respectively.

Effect of feed restriction on the maintenance energy requirement of broiler breeders

  • da Silva Teofilo, Guilherme Ferreira;Lizana, Rony Riveros;de Souza Camargos, Rosiane;Leme, Bruno Balbino;Morillo, Freddy Alexander Horna;Silva, Raully Lucas;Fernandes, Joao Batista Kochenborger;Sakomura, Nilva Kazue
    • Animal Bioscience
    • /
    • v.35 no.5
    • /
    • pp.690-697
    • /
    • 2022
  • Objective: This study aimed to evaluate the effect of the ad libitum and restricted feeding regimen on fasting heat production (FHP) and body composition. Methods: Twelve Hubbard broilers breeders were selected with the same body weight and submitted in two feeding regimes: Restricted (T1) with feed intake of 150 g/bird/d and ad libitum (T2). The birds were randomly distributed on the treatments in two runs with three replications per treatment (per run). The birds were adapted to the feed regimens for ten days. After that, they were allocated in the open-circuit chambers and kept for three days for adaptation. On the last day, oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured by 30 h under fasting. The respiratory quotient (RQ) was calculated as the VCO2/VO2 ratio, and the heat production (HP) was obtained using the Brower equation (1985). The FHP was estimated throughout the plateau of HP 12 hours after the feed deprivation. The body composition was analyzed by dual-energy X-ray absorptiometry scanning at the end of each period. Data were analyzed for one-way analysis of variance using the Minitab software. Results: The daily feed intake was 30 g higher to T2 (p<0.01) than the T1. Also, the birds of the T2 had significatively (p<0.05) more oxygen consumption (+3.1 L/kg0.75/d) and CO2 production (+2.2 L/kg0.75/d). That resulted in a higher FHP 359±14 kJ/kg0.75/d for T2 than T1 296±17.23 kJ/kg0.75/d. In contrast, the RQ was not different between treatments, with an average of 0.77 for the fasting condition. In addition, protein and fat composition were not affected by the treatment, while a tendency (p<0.1) was shown to higher bone mineral content on the T1. Conclusion: The birds under ad libitum feeding had a higher maintenance energy requirement but their body composition was not affected compared to restricted feeding.

A Study on the Effects of Ambient Light on the Reflective PPG Measurement Device using Infrared (적외선을 사용한 반사형 PPG 측정 장치에서의 주변광의 영향에 대한 연구)

  • Namsub Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.406-412
    • /
    • 2023
  • In this paper, we studied the effect of noise caused by ambient light on a reflective PPG measurement device using infrared light. Noise caused by ambient light was examined by dividing it into general situations and special situations. In the general situation, noise due to changes in time and ambient light sources was randomly observed, and in the special situation, a halogen lamp was used to observe the effect of noise variations. In the experiment, PPG signals were measured and data acquired in real-time depending on each situation, and the measured data was analyzed in the time domain and frequency domain. First, through a general situation experiments, it was visually observed that noise increases with the brightness of ambient light, and through frequency analysis, it was observed that the noise sources were white noise, power line noise, and internal noise of the circuit. Futhermore, using a halogen lamp, we experimented with the change in noise depending on the change in distance from the ambient light and calculated the SNR. As a result of the experiment, an SNR of 3.2 dB was shown at a distance of 50 cm with an irradiance of 278.3 W/m2. It was observed that normal measurement was difficult at SNRs below that, and an irradiance of 27.7 W/m2 was obtained. It showed a value of 18.2 dB at a distance of 2 m, and it was observed that normal PPG measurement was possible through a filter at values above that.

Effect of Individualized Exercise Program for Preventing Metabolic Syndrome among IT Company Office Workers (IT 기업 사무직 근로자의 대사증후군 예방을 위한 맞춤형 운동프로그램의 효과)

  • Kyungun Bae;Sung Hyun You;Dabi Shin;Yuncheol Ha;Hongmin Kim;Byungchan Pak;Hyosang Kim;Shinae Park
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.1
    • /
    • pp.77-84
    • /
    • 2024
  • Objectives: Interventions promoting physical exercise and healthy habits in workplaces have been shown to be effective in reducing risk factors for metabolic syndrome. This study was conducted to examine the effects of an individualized conditioning exercise program of IT company office workers with or at higher risk of metabolic syndrome. Methods: A total of 444 IT company office workers with or at higher risk of metabolic syndrome participated in a 3-month conditioning exercise program. Body composition data using bioelectrical impedance analysis and cardiopulmonary data using cardiopulmonary exercise testing from 53 individuals (mean age: 34.8 ± 7.1 years, sex : 21% female, height : 170.4 ± 6.8 cm, weight : 75.2±12.2 kg, body mass index : 25.8±3.3 kg/m2) who have successfully completed pre-test, intervention, and post-test were analyzed. The 12 weeks intervention encompassed: (1) health counseling (2) supervised exercise(endurance-based, aerobic exercise, or circuit training once a week for 50 minutes at heart rate reserve(HRR) of 77-95%) (3) self-directed exercise and biweekly health screening checks. Results: The results indicated a significant decrease in body weight, body fat mass and body mass index, respectively. Moreover, VO2peak, AT VO2 and AT Time significantly improved, respectively. Resting blood pressure(SBP/DBP) showed positive changes but were not statistically significant. We observed the correlation between characteristics of participants and rate of changes in cardiopulmonary outcomes of participants, there are no significant correlation. These results indicate positive changes in body composition and cardiorespiratory fitness parameters following individualized conditioning exercise program. Conclusions: Individualized workplace exercise program for preventing metabolic syndrome can lead to improvements in body composition and cardiorespiratory fitness.

Correct Closure of the Left Atrial Appendage Reduces Stagnant Blood Flow and the Risk of Thrombus Formation: A Proof-of-Concept Experimental Study Using 4D Flow Magnetic Resonance Imaging

  • Min Jae Cha;Don-Gwan An;Minsoo Kang;Hyue Mee Kim;Sang-Wook Kim;Iksung Cho;Joonhwa Hong;Hyewon Choi;Jee-Hyun Cho;Seung Yong Shin;Simon Song
    • Korean Journal of Radiology
    • /
    • v.24 no.7
    • /
    • pp.647-659
    • /
    • 2023
  • Objective: The study was conducted to investigate the effect of correct occlusion of the left atrial appendage (LAA) on intracardiac blood flow and thrombus formation in patients with atrial fibrillation (AF) using four-dimensional (4D) flow magnetic resonance imaging (MRI) and three-dimensional (3D)-printed phantoms. Materials and Methods: Three life-sized 3D-printed left atrium (LA) phantoms, including a pre-occlusion (i.e., before the occlusion procedure) model and correctly and incorrectly occluded post-procedural models, were constructed based on cardiac computed tomography images from an 86-year-old male with long-standing persistent AF. A custom-made closed-loop flow circuit was set up, and pulsatile simulated pulmonary venous flow was delivered by a pump. 4D flow MRI was performed using a 3T scanner, and the images were analyzed using MATLAB-based software (R2020b; Mathworks). Flow metrics associated with blood stasis and thrombogenicity, such as the volume of stasis defined by the velocity threshold ($\left|\vec{V}\right|$ < 3 cm/s), surface-and-time-averaged wall shear stress (WSS), and endothelial cell activation potential (ECAP), were analyzed and compared among the three LA phantom models. Results: Different spatial distributions, orientations, and magnitudes of LA flow were directly visualized within the three LA phantoms using 4D flow MRI. The time-averaged volume and its ratio to the corresponding entire volume of LA flow stasis were consistently reduced in the correctly occluded model (70.82 mL and 39.0%, respectively), followed by the incorrectly occluded (73.17 mL and 39.0%, respectively) and pre-occlusion (79.11 mL and 39.7%, respectively) models. The surfaceand-time-averaged WSS and ECAP were also lowest in the correctly occluded model (0.048 Pa and 4.004 Pa-1, respectively), followed by the incorrectly occluded (0.059 Pa and 4.792 Pa-1, respectively) and pre-occlusion (0.072 Pa and 5.861 Pa-1, respectively) models. Conclusion: These findings suggest that a correctly occluded LAA leads to the greatest reduction in LA flow stasis and thrombogenicity, presenting a tentative procedural goal to maximize clinical benefits in patients with AF.

A study on the design of a trumpet horn for automobiles based on acoustic reactance at the horn throat (혼 입구에서의 음향 리액턴스에 근거한 자동차용 트럼펫 혼의 설계 연구)

  • Junsu Lee;Woongji Kim;Daehyun Kim;Dongwook Yoo;Wonkyu Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.39-48
    • /
    • 2024
  • A car horn serves a crucial safety role as a means of communication between drivers and a part that alerts pedestrians in advance. While previous studies have utilized finite element method and electric circuit model to simulate and analyze characteristics of the car horns, there remains a lack of research on design methods of a trumpet horn. This paper presents a design approach that predicts the operating frequency based on the acoustic reactance at the throat of the horn, once the vibrating part is determined. We deal with a horn combining both an exponential horn and a waveguide in the acoustic section, and confirm that the acoustic reactance at the horn throat measured by impedance tube experiment agrees well compared with the numerical result obtained using the finite element method. The resonance frequency of the car horn is predicted using the COMSOL Multiphysics finite element numerical analysis model, and the proposed design method is validated by measuring the operating frequency of the designed horn in a sound pressure experiment. As a result, the resonance measured in a semi-anechoic chamber environment by applying a DC voltage of 12 [V] excluding the holder occurs accurately within a few [Hz] of the design operating frequency. This paper discuss the design method of a trumpet horn from the perspective of the horn's acoustic reactance, and is expected to be useful for designing horn systems.

PASTELS project - overall progress of the project on experimental and numerical activities on passive safety systems

  • Michael Montout;Christophe Herer;Joonas Telkka
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.803-811
    • /
    • 2024
  • Nuclear accidents such as Fukushima Daiichi have highlighted the potential of passive safety systems to replace or complement active safety systems as part of the overall prevention and/or mitigation strategies. In addition, passive systems are key features of Small Modular Reactors (SMRs), for which they are becoming almost unavoidable and are part of the basic design of many reactors available in today's nuclear market. Nevertheless, their potential to significantly increase the safety of nuclear power plants still needs to be strengthened, in particular the ability of computer codes to determine their performance and reliability in industrial applications and support the safety demonstration. The PASTELS project (September 2020-February 2024), funded by the European Commission "Euratom H2020" programme, is devoted to the study of passive systems relying on natural circulation. The project focuses on two types, namely the SAfety COndenser (SACO) for the evacuation of the core residual power and the Containment Wall Condenser (CWC) for the reduction of heat and pressure in the containment vessel in case of accident. A specific design for each of these systems is being investigated in the project. Firstly, a straight vertical pool type of SACO has been implemented on the Framatome's PKL loop at Erlangen. It represents a tube bundle type heat exchanger that transfers heat from the secondary circuit to the water pool in which it is immersed by condensing the vapour generated in the steam generator. Secondly, the project relies on the CWC installed on the PASI test loop at LUT University in Finland. This facility reproduces the thermal-hydraulic behaviour of a Passive Containment Cooling System (PCCS) mainly composed of a CWC, a heat exchanger in the containment vessel connected to a water tank at atmospheric pressure outside the vessel which represents the ultimate heat sink. Several activities are carried out within the framework of the project. Different tests are conducted on these integral test facilities to produce new and relevant experimental data allowing to better characterize the physical behaviours and the performances of these systems for various thermo-hydraulic conditions. These test programmes are simulated by different codes acting at different scales, mainly system and CFD codes. New "system/CFD" coupling approaches are also considered to evaluate their potential to benefit both from the accuracy of CFD in regions where local 3D effects are dominant and system codes whose computational speed, robustness and general level of physical validation are particularly appreciated in industrial studies. In parallel, the project includes the study of single and two-phase natural circulation loops through a bibliographical study and the simulations of the PERSEO and HERO-2 experimental facilities. After a synthetic presentation of the project and its objectives, this article provides the reader with findings related to the physical analysis of the test results obtained on the PKL and PASI installations as well an overall evaluation of the capability of the different numerical tools to simulate passive systems.

Risk Factor Analysis for Operative Death and Brain Injury after Surgery of Stanford Type A Aortic Dissection (스탠포드 A형 대동맥 박리증 수술 후 수술 사망과 뇌손상의 위험인자 분석)

  • Kim Jae-Hyun;Oh Sam-Sae;Lee Chang-Ha;Baek Man-Jong;Hwang Seong-Wook;Lee Cheul;Lim Hong-Gook;Na Chan-Young
    • Journal of Chest Surgery
    • /
    • v.39 no.4 s.261
    • /
    • pp.289-297
    • /
    • 2006
  • Background: Surgery for Stanford type A aortic dissection shows a high operative mortality rate and frequent postoperative brain injury. This study was designed to find out the risk factors leading to operative mortality and brain injury after surgical repair in patients with type A aortic dissection. Material and Method: One hundred and eleven patients with type A aortic dissection who underwent surgical repair between February, 1995 and January 2005 were reviewed retrospectively. There were 99 acute dissections and 12 chronic dissections. Univariate and multivariate analysis were performed to identify risk factors of operative mortality and brain injury. Resuit: Hospital mortality occurred in 6 patients (5.4%). Permanent neurologic deficit occurred in 8 patients (7.2%) and transient neurologic deficit in 4 (3.6%). Overall 1, 5, 7 year survival rate was 94.4, 86.3, and 81.5%, respectively. Univariate analysis revealed 4 risk factors to be statistically significant as predictors of mortality: previous chronic type III dissection, emergency operation, intimal tear in aortic arch, and deep hypothemic circulatory arrest (DHCA) for more than 45 minutes. Multivariate analysis revealed previous chronic type III aortic dissection (odds ratio (OR) 52.2), and DHCA for more than 45 minutes (OR 12.0) as risk factors of operative mortality. Pathological obesity (OR 12.9) and total arch replacement (OR 8.5) were statistically significant risk factors of brain injury in multivariate analysis. Conclusion: The result of surgical repair for Stanford type A aortic dissection was good when we took into account the mortality rate, the incidence of neurologic injury, and the long-term survival rate. Surgery of type A aortic dissection in patients with a history of chronic type III dissection may increase the risk of operative mortality. Special care should be taken and efforts to reduce the hypothermic circulatory arrest time should alway: be kept in mind. Surgeons who are planning to operate on patients with pathological obesity, or total arch replacement should be seriously consider for there is a higher risk of brain injury.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

Particle Size Analysis of Cadmium Aerosol for Cadmium Inhalation Toxicology Study (766ppm Cadmium Nebulizing Solution) (카드뮴의 흡입독성 연구를 위해 설계된 에어로졸 발생장치에서 발생된 카드뮴 에어로졸의 입경분석(766ppm 카드뮴 네뷸라이징 용액))

  • Jeung Jae Yeal;Milton Donald K.;Kim Tae Hyeung;Lee Jong Young;Jahng Doo Sub;Kang Sung He;Song Young Sun;Lee Ki Nam
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.1035-1041
    • /
    • 2002
  • Ultrasonic nebulizer with the application of new engineering methodology and the design of electronic circuit and 766ppm Cd nebulizing solution were used to generate cadmium aerosol for inhalation toxicology study. The results of particle size analysis for cadmium aerosol were as following. The highest particle counting for source temperature 20℃ was 43.449 x 10³ in inlet temperature 250℃ and particle diameter 0.75㎛. The highest particle counting for source temperature 50℃ was 43.211 x 10³ in inlet temperature 100 ℃ and particle diameter 0.75㎛. The highest particle counting for source temperature 70℃ was 41.917x10³ in inlet temperature 250℃ and particle diameter 0.75㎛. The ranges of geometric mean diameter(GMD) were 0.677-1.009㎛ in source temperature 20℃, 0.716-0.963㎛ in source temperature 50℃, and 0.724-0.957㎛ in source temperature 70℃. The smallest GMD was 0.677㎛ in source temperature 20℃ and inlet temperature 20℃. and the largest GMD was 1.009㎛ in source temperature 20℃ and inlet temperature 20℃. The ranges of geometric standard deviation(GSD) were 1.635-2.101 in source temperature 20℃. 1.676-2.073 in source temperature 50℃, and 1.687-2.051 in source temperature 70℃. The lowest GSD was 1.635 in source temperature 20℃ and inlet temperature 20℃, and the highest GSD was 2.101 in source temperature 20℃ and inlet temperature 200℃. Aerosol generated for cadmium inhalation toxicology study was polydisperse aerosol. The ranges of mass median diameter(MMD) were 1.399-5.270㎛ in source temperature 20℃. 1.593-4.742㎛ in source temperature 50℃, and 1.644-4.504㎛ in source temperature 70℃. The smallest MMD was 1.399㎛ in source temperature 20℃ and inlet temperature 20℃, and the largest MMD was 5.270㎛ in source temperature 20℃ and inlet temperature 200℃. Increasing trends for GMD, GSD, and MMD were observed with same source temperature and increase of inlet temperature. MMD for inhalation toxicology testing in EPA guidance is less than 4㎛. In our results. inlet temperature 20 and 50℃ in source temperature 20℃, and inlet temperature 20 to 150℃ in source temperature 50 and 70℃ were conformed to the EPA guidance. MMD for inhalation toxicology testing in OECD and EU is less than 3㎛. In our results, inlet temperature 20 and 50℃ in source temperature 20, 50, and 70℃ were conformed to the OECD and EU guidance.