• Title/Summary/Keyword: Circle Detection

Search Result 98, Processing Time 0.028 seconds

Vision Processing for Precision Autonomous Landing Approach of an Unmanned Helicopter (무인헬기의 정밀 자동착륙 접근을 위한 영상정보 처리)

  • Kim, Deok-Ryeol;Kim, Do-Myoung;Suk, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.54-60
    • /
    • 2009
  • In this paper, a precision landing approach is implemented based on real-time image processing. A full-scale landmark for automatic landing is used. canny edge detection method is applied to identify the outside quadrilateral while circular hough transform is used for the recognition of inside circle. Position information on the ground landmark is uplinked to the unmanned helicopter via ground control computer in real time so that the unmanned helicopter control the air vehicle for accurate landing approach. Ground test and a couple of flight tests for autonomous landing approach show that the image processing and automatic landing operation system have good performance for the landing approach phase at the altitude of $20m{\sim}1m$ above ground level.

Automatic Coin Calculation System using Circular Hough Transform and Post-processing Techniques (원형 Hough 변환 및 후처리기법을 이용한 동전 자동 계산 시스템)

  • Chae, S.;Jun, Kyungkoo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.413-419
    • /
    • 2014
  • In this paper, we develop an automatic coin calculation system by using digital image processing. Existing schemes have the problem that is not able to exclude non-circular shape from the calculation. We propose a method to detect only coins which have circular form by applying the circular Hough transform(CHT). However, the CHT has the drawback that detects multiple circles even for just one coin because of shadow noise, the patterns on coins, and non-circular edge detection. We propose a post processing algorithm to overcome these limitations. The proposed system was implemented and successfully calculated the coin amount in the case that non-circular objects are mixed with coins.

Pupil Detection using Multistage Adaptive Thresholding and Circular Hough Transform

  • Navastara, Dini Adni;Park, Hyun-Jun;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.90-93
    • /
    • 2013
  • This paper presents a multistage adaptive thresholding method and circular Hough transform for pupil detection. Multistage adaptive thresholding is a thresholding method that applies local image statistic within a neighborhood variable and the global thresholds. Therefore, the method can adopt the benefit of local thresholding and prevent an over segmentation at the same time because of the global image information. To detect a pupil, a circular Hough transform is applied to it in which the pupil pattern is considered as a circle shape. The experimental results show the reliability of our proposed method in detecting pupil properly.

  • PDF

Soccer Image Sequences Mosaicing Using Reverse Affine Transform

  • Yoon, Ho-Sub;Jung Soh;Min, Byung-Woo;Yang, Young-Kyu
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.877-880
    • /
    • 2000
  • In this paper, we develop an algorithm of soccer image sequences mosaicing using reverse affine transform. The continuous mosaic images of soccer ground field allows the user/viewer to view a “wide picture” of the player’s actions The first step of our algorithm is to automatic detection and tracking player, ball and some lines such as center circle, sideline, penalty line and so on. For this purpose, we use the ground field extraction algorithm using color information and player and line detection algorithm using four P-rules and two L-rules. The second step is Affine transform to map the points from image to model coordinate using predefined and pre-detected four points. General Affine transformation has many holes in target image. In order to delete these holes, we use reverse Affine transform. We tested our method in real image sequence and the experimental results are given.

  • PDF

A Novel Circle Detection Algorithm for Iris Segmentation (홍채 영역 분할을 위한 새로운 원 검출 알고리즘)

  • Yoon, Woong-Bae;Kim, Tae-Yun;Oh, Ji-Eun;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.12
    • /
    • pp.1385-1392
    • /
    • 2013
  • There is a variety of researches about recognition system using biometric data these days. In this study, we propose a new algorithm, uses simultaneous equation that made of the edge of objects, to segment an iris region without threshold values from an anterior eye image. The algorithm attempts to find a center area through calculated outskirts information of an iris, and decides the area where the most points are accumulated. To verify the proposed algorithm, we conducted comparative experiments to Hough transform and Daugman's method, based on 50 images anterior eye images. It was found that proposed algorithm is 5 and 75 times faster than on each algorithm, and showed high accuracy of detecting a center point (95.36%) more than Hough transform (92.43%). In foreseeable future, this study is expected to useful application in diverse department of human's life, such as, identification system using an iris, diagnosis a disease using an anterior image.

Automated Measurement Method for Construction Errors of Reinforced Concrete Pile Foundation Using a Drones (드론을 활용한 철근콘크리트 말뚝기초 시공 오차 자동화 측정 방법)

  • Seong, Hyeonwoo;Kim, Jinho;Kang, HyunWook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.2
    • /
    • pp.45-53
    • /
    • 2022
  • The purpose of this study is to present a model for analyzing construction errors of reinforced concrete pile foundations using drones. First, a drone is used to obtain an aerial image of the construction site, and an orthomosaic image is generated based on those images. Then, the circular pile foundation is automatically recognized from the orthomosaic image by using the Hough transform circle detection method. Finally, the distance is calculated based on the the center point of the reinforced concrete pile foundation in the overlapped data. As a case study, the proposed concrete concrete pile foundation construction quality control model was applied to the real construction site in Incheon to evaluate the proposed model.

Center point prediction using Gaussian elliptic and size component regression using small solution space for object detection

  • Yuantian Xia;Shuhan Lu;Longhe Wang;Lin Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.1976-1995
    • /
    • 2023
  • The anchor-free object detector CenterNet regards the object as a center point and predicts it based on the Gaussian circle region. For each object's center point, CenterNet directly regresses the width and height of the objects and finally gets the boundary range of the objects. However, the critical range of the object's center point can not be accurately limited by using the Gaussian circle region to constrain the prediction region, resulting in many low-quality centers' predicted values. In addition, because of the large difference between the width and height of different objects, directly regressing the width and height will make the model difficult to converge and lose the intrinsic relationship between them, thereby reducing the stability and consistency of accuracy. For these problems, we proposed a center point prediction method based on the Gaussian elliptic region and a size component regression method based on the small solution space. First, we constructed a Gaussian ellipse region that can accurately predict the object's center point. Second, we recode the width and height of the objects, which significantly reduces the regression solution space and improves the convergence speed of the model. Finally, we jointly decode the predicted components, enhancing the internal relationship between the size components and improving the accuracy consistency. Experiments show that when using CenterNet as the improved baseline and Hourglass-104 as the backbone, on the MS COCO dataset, our improved model achieved 44.7%, which is 2.6% higher than the baseline.

Morphological Object Recognition Algorithm (몰포러지 물체인식 알고리즘)

  • Choi, Jong-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.175-180
    • /
    • 2018
  • In this paper, a feature extraction and object recognition algorithm using only morphological operations is proposed. The morphological operations used in feature extraction are erosion and dilation, opening and closing combining erosion and dilation, and morphological edge and skeleton detection operation. In the process of recognizing an object based on features, a pooling operation is applied to reduce the dimension. Among various structuring elements, $3{\times}3$ rhombus, $3{\times}3$ square, and $5{\times}5$ circle are arbitrarily selected in morphological operation process. It has confirmed that the proposed algorithm can be applied in object recognition fields through experiments using Internet images.

A Study on the Forming Failure Inspection of Small and Multi Pipes (소형 다품종 파이프의 실시간 성형불량 검사 시스템에 관한 연구)

  • 김형석;이회명;이병룡;양순용;안경관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.61-68
    • /
    • 2004
  • Recently, there has been an increasing demand for computer-vision based inspection and/or measurement system as a part of factory automation equipment. Existing manual inspection method can inspect only specific samples and has low measuring accuracy as well as it increases working time. Thus, in order to improve the objectivity and reproducibility, computer-aided analysis method is needed. In this paper, front and side profile inspection and/or data transfer system are developed using computer-vision during the inspection process on three kinds of pipes coming from a forming line. Straight line and circle are extracted from profiles obtained from vision using Laplace operator. To reduce inspection time, Hough Transform is used with clustering method for straight line detection and the center points and diameters of inner and outer circle are found to determine eccentricity and whether good or bad. Also, an inspection system has been built that each pipe's data and images of good/bad test are stored as files and transferred to the server so that the center can manage them.

Stable and Precise Multi-Lane Detection Algorithm Using Lidar in Challenging Highway Scenario (어려운 고속도로 환경에서 Lidar를 이용한 안정적이고 정확한 다중 차선 인식 알고리즘)

  • Lee, Hanseul;Seo, Seung-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.158-164
    • /
    • 2015
  • Lane detection is one of the key parts among autonomous vehicle technologies because lane keeping and path planning are based on lane detection. Camera is used for lane detection but there are severe limitations such as narrow field of view and effect of illumination. On the other hands, Lidar sensor has the merits of having large field of view and being little influenced by illumination because it uses intensity information. Existing researches that use methods such as Hough transform, histogram hardly handle multiple lanes in the co-occuring situation of lanes and road marking. In this paper, we propose a method based on RANSAC and regularization which provides a stable and precise detection result in the co-occuring situation of lanes and road marking in highway scenarios. This is performed by precise lane point extraction using circular model RANSAC and regularization aided least square fitting. Through quantitative evaluation, we verify that the proposed algorithm is capable of multi lane detection with high accuracy in real-time on our own acquired road data.