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Abstract 

 
The anchor-free object detector CenterNet regards the object as a center point and predicts it 
based on the Gaussian circle region. For each object's center point, CenterNet directly 
regresses the width and height of the objects and finally gets the boundary range of the objects. 
However, the critical range of the object's center point can not be accurately limited by using 
the Gaussian circle region to constrain the prediction region, resulting in many low-quality 
centers' predicted values. In addition, because of the large difference between the width and 
height of different objects, directly regressing the width and height will make the model 
difficult to converge and lose the intrinsic relationship between them, thereby reducing the 
stability and consistency of accuracy. For these problems, we proposed a center point 
prediction method based on the Gaussian elliptic region and a size component regression 
method based on the small solution space. First, we constructed a Gaussian ellipse region that 
can accurately predict the object's center point. Second, we recode the width and height of the 
objects, which significantly reduces the regression solution space and improves the 
convergence speed of the model. Finally, we jointly decode the predicted components, 
enhancing the internal relationship between the size components and improving the accuracy 
consistency. Experiments show that when using CenterNet as the improved baseline and 
Hourglass-104 as the backbone, on the MS COCO dataset, our improved model achieved 
44.7%, which is 2.6% higher than the baseline. 
 
Keywords:  Object detection, Anchor-free, Gaussian elliptic region, Center point prediction, 
Small solution space regression 
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1. Introduction 

Recently, with the emergence and application of high-performance computers and large-
scale public datasets, many models[1-10] with powerful adaptive feature extraction 
capabilities and high recognition accuracy have been widely used in object detection, 
promoting the detector's performance. Detection models can be divided into anchor-base and 
anchor-free, depending on whether or not to use the anchor. 

The anchor-base detector counts the sizes of different objects in the dataset through a 
clustering algorithm to generate a series of prior boxes. These prior boxes will be used as 
hyperparameters to assist the detector in completing the detection task. The anchor box 
mechanism effectively improved the detector performance for a specific dataset, but there are 
also several problems. First, these fixed-size anchors significantly impair the universality of 
the detectors. When the detectors face different tasks and datasets, parameters such as the size 
of the anchor boxes must be reset. Second, the anchors' size, number, and aspect ratio will 
seriously impact the detection performance. Some experiments show that adjusting these 
hyperparameters can increase the AP of Retinanet[11] on the COCO[12] dataset by 4%. 
Finally, most of the generated anchors are marked as negative samples, artificially leading to 
an imbalance between samples. In addition, generating too many anchor boxes will cause a lot 
of memory and time consumption, aggravate the extra overhead of computing resources, and 
affect detection efficiency. 

In order to solve the negative impact of the anchor mechanism, CenterNet[13] regards the 
object as a geometric center point and predicts the center point through a heatmap while 
regressing the object’s width and height. As shown in Fig. 1, CenterNet predicts each object's 
center point position and category through the center point Heatmap and corrects the center 
point coordinates through the Offset feature maps. At the same time, the network regresses the 
width and height for each center point through the Size Component feature map with two 
channels, and the two channels respectively predict the width and height corresponding to each 
center point. Since the whole process does not require defining and calculating any prior boxes, 
it eliminated the negative impact of the anchor mechanism, making the prediction logic more 
intuitive and efficient. 
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Fig. 1. The network structure of CenterNet. 

 
However, we can see from Fig. 2 that to satisfy the IOU threshold, CenterNet uses the 

distance between the upper left corner points of two anchors to approximate the vertical and 
horizontal distances between them. That is r d≈  is used to construct the Gaussian circle 
prediction area. Since the object's upper left corner and center point are consistent, they have 
the same prediction area range. It can be seen that this approximate value method can not get 
the accurate range of the object center prediction region. In addition, because the same radius 
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r  is used to limit the object's horizontal and vertical directions when the width and height of 
the objects differ significantly, the object's center point prediction will produce a significant 
error, thus reducing the prediction accuracy. 
 

(a)

r
rd

r
rd

d r
r

(b) (c)
 

Fig. 2. The Gaussian circle prediction region of CenterNet. The red box is the predicted bounding box, 
the black box is the ground-true, and the yellow part is the overlapping area. The green circle area is 
the predicted area of the Gaussian circle, d  is the upper left corner distance between the ground-true 

and the predicted box, and r  is the Gaussian circle radius of the predicted area. 
 

In addition, since no prior distribution knowledge is introduced in advance, the anchor-free 
detector has a larger and more flexible solution space. However, the overly flexible and huge 
solution space dramatically increases the model's training difficulty and generates too many 
false positives. This problem is particularly prominent for CenterNet. As shown in Table 1, 
since the size range of objects varies greatly, direct regression will lead to too large solution 
space, slowing down the convergence rate and increasing the instability. Moreover, since 
width and height are independently predicted in two channels, the lack of intrinsic correlation 
between width and height at the same position will lead to inconsistent prediction accuracy, 
thus reducing the model's prediction performance. 
 

Table 1. The width and height range of objects in the MS COCO dataset 
Dataset Width range Height range 

MS COCO (0,640] (0,640] 
 

For the problems mentioned above, we proposed an object's center point prediction method 
based on the Gaussian elliptic region and an object's size component regression method based 
on a small solution space. The central area of the Gaussian ellipse can accurately limit the 
prediction area of the object center point and improve the prediction accuracy of different 
object center points. The size component regression in the small solution space method 
effectively compresses solution space, increases convergence speed, and improves the 
consistency of size component accuracy.  

The following are the main contributions of this paper:: 
1. First, we used two independent variables to control the horizontal and vertical distances 

between the object's ground-truth and predicted bounding box and limit the ratio of these two 
variables. And then, we calculate the variable critical value that meets the IOU threshold 
requirements according to the possible positional relationships between the object's ground-
truth predicted bounding box. The critical value will be used as the major and minor semi-axes 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 8, August 2023                                1979 

of the center point prediction region of the Gaussian ellipse to precisely limit the prediction 
range of the object's center point. 

2. Second, we re-encode the object’s width and height into a small solution space and 
directly regress the encoded size components. The encoded size components had a smaller 
solution space, which can effectively improve the convergence speed and stability. 

3. Finally, the predicted size components are jointly decoded into two length components 
in the horizontal and vertical directions. Since the two length components depend on the joint 
decoding of the size components, they have a stronger intrinsic correlation and consistency in 
accuracy. 

The rest of the paper is as follows: In section 2, we briefly reviewed the main research work 
for object detection. In section 3, we propose and introduce the improved method in detail. In 
section 4, we verify the proposed method's effectiveness and performance by conducting 
extensive experiments and comparing the improved method with other state-of-the-art 
detection models. In section 5, we gave the conclusion and summarization. 

2. Related Work 

2.1 Two-state anchor-based detectors 
The Faster-RCNN proposed by Ren et al.[14] used the anchor mechanism for the first time to 
classify and localize objects. It adopts the RPN to replace the selective search[15] used in R-
CNN[16] and Fast-RCNN[17] to generate candidate regions, which realizes end-to-end 
training and prediction. He et al.[18] proposed Mask R-CNN based on Faster-RCNN, which 
integrates the dual functions of object detection and instance segmentation and improves the 
ability to solve more complex visual tasks. Cai et al.[19] proposed Cascade R-CNN to train 
multiple cascade detectors using different IoU thresholds. It can train a higher-quality 
detection model without reducing the number of samples and improve the detection 
performance degradation caused by IoU threshold selection in Faster-RCNN. The above are 
all two-stage algorithms using the anchor mechanism. Although the detection performance has 
been dramatically improved, there are still significant deficiencies in the detection speed. 
Therefore, a series of one-stage object detectors have been proposed based on the anchor 
mechanism. 

2.2 One-state anchor-based detectors 
Liu et al. [20] proposed an object detection model called SSD based on multi-scale feature 
prediction. The SSD introduced the anchor mechanism and used FPN[21] to predict objects 
on different scale feature maps. DSSD[22] used the deconvolution method and added context 
information so that the low-level feature maps have better feature expression ability. Leng et 
al.[23] improved SSD and proposed the SSADet. Compared with SSD, SSADet adopts anchor 
prediction and feature fusion modules to improve the detection accuracy effectively. 
Subsequently, YOLO series models have been continuously developed. YOLOv2[24] uses the 
DarkNet-19 network and the anchor mechanism to improve detection accuracy further. 
YOLOv3[25] improved YOLOv2 by using Darknet-53 as the backbone for feature extraction 
and added up-sampling feature fusion operation based on FPN so that the model could extract 
object features more accurately. Hurtik et al.[26] improved YOLOv3 and proposed poly-
YOLO. It eliminates the problem of many rewritten labels and inefficient distribution of 
anchors in Yolov3. Bochkovskiy et al.[27] summarize and improve the training techniques 
that have achieved excellent detection performance in recent years and proposed YOLOv4. It 
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adopts CSPNet[5] as the feature extraction network and PAN[28] as the feature fusion network, 
which improves the model feature extraction and fusion capabilities. Tan et al.[29] proposed 
EfficientDet by improving the FPN network. It is based on the weighted bidirectional feature 
pyramid network BiFPN, enabling the model to perform multi-scale feature fusion more 
conveniently and quickly. Lin et al.[11] proposed the Focal Loss function, which solved the 
low accuracy of one-stage detectors, thus significantly improving the detection accuracy of 
one-stage object detectors. Ju et al.[30] proposed an adaptive feature fusion with attention 
mechanism (AFFAM) method, which further improved the detection performance of YOLOv3 
and DSSD. 

2.3 Anchor-free detectors 
All the above algorithms have used the anchor mechanism. In order to solve the negative 
impact of the anchor on detection performance, in recent years, some anchor-free detectors 
have been widely concerned. As the foundation work of the anchor-free detectors, Huang et 
al.[31] proposed DenseBox based on FCN[32]. DenseBox combines multi-task learning with 
key-point detection, which enables it to detect the object with severe occlusion accurately and 
efficiently without generating candidate bounding boxes. Yu et al.[33] proposed UnitBosx 
based on improving DenseBox. UnitBox adopts the newly designed IOU Loss to process the 
four coordinate regression values of the object as a whole. As the first version of the YOLO 
series models, YOLO v1[34] adopts the anchor-free approach to simultaneously predict the 
object’s location and category by using only one neural network, significantly improving the 
detection speed. Tian et al.[35] proposed a pixel-level prediction object detection algorithm 
called FCOS. It reconstructs detection objects on a per-pixel basis and uses FPN to improve 
the recall rate and resolve ambiguity caused by overlapping boundaries. In addition, it 
proposed the center-ness branch, which reduces the false-positive boxes and dramatically 
improves the detection performance. Zhu et al.[36] proposed an anchor-free feature selection 
module FSAF, which solves the limitations of heuristic feature selection and overlap-based 
anchor sampling in the traditional anchor-based algorithm. Kong et al.[37] proposed an 
accurate and flexible anchor-free object detection model called FoveaBox. It generates class-
agnostic bounding boxes for each location that may contain an object. 

With the continuous improvement of the key point prediction algorithm, more and more 
detectors have adopted the key point prediction method to complete the object detection task. 
Law et al.[38] proposed CornerNet based on the corner point prediction. It regards the object 
as a pair of key points and predicts its top-left and bottom-right heatmaps through a single 
network and the embedding vector for each corner point. The embedding vectors are used to 
group corner points that belong to the same object. To further enhance the accuracy of 
keypoint-based prediction, Zhou et al.[39] proposed ExtremeNet based on CornerNet, which 
performs object localization by detecting the four poles of the object. The four poles and the 
center area of the object are predicted respectively through five heatmaps and combined with 
the poles of different heatmaps. Although the method of multiple keypoint prediction improves 
the performance of anchor-free detectors, predicting too many key points increases the 
difficulty of late matching. For this problem, Zhou et al.[13] proposed CenterNet, an anchor-
free object detector based on center point prediction that only regards the object as a center 
key point for prediction. First, predict the center area of the object through the heatmaps, then 
adjust the center point through the offset feature maps, and finally, regress the object’s width 
and height. There is no complex matching work since there is only one key point for prediction, 
making the model simpler and more efficient. 
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3. Proposed Method 
The detail of our proposed method will introduce in this section. First, we introduced the 
generation and calculation process of the center point prediction based on the Gaussian elliptic 
region. Then, we introduce the coding and regression process of the size component based on 
the small solution space. Finally, we give the joint decoding process of the size components. 
The object's position can be obtained according to the predicted center point coordinates and 
the decoded size components. 

3.1 Center point prediction based on the Gaussian elliptic region 
As shown in Fig. 3, for the selected IOU threshold, the positional relationship between the 
predicted and the ground-truth bounding box is as follows: 

d b
a

d b
a

d b
a

(a) (b) (c)
 

Fig. 3. The Gaussian ellipse prediction region. The red box is the predicted bounding box, the black 
box is the ground-true bounding box, and the yellow part is the overlapping area. The green ellipse 

area is the predicted area of the Gaussian ellipse, a  is the horizontal distance between the ground-true 
and predicted bounding box, b  is the vertical distance between the ground-true and predicted 

bounding box, d  is the distance between the upper left corner of the predicted and ground-true 
bounding box. 

 
In order to more accurately describe and limit the possible prediction area range of the 

object's center point and avoid inaccurate caused by the large gap between the object's size, 
we control the vertical and horizontal distance between the predicted and ground-true 
bounding box through a  and b , respectively. For each case, the ratio of a  and b  is specified 
to be consistent with the aspect ratio of the object's ground-truth bounding box. The 
relationship between a  and b  can be described as follows: 

a w
b h
=                                                              (1) 

where w  and h  are the width and height of the object's ground-truth bounding box, which are 
known. 

3.1.1 The ground-truth box completely falls within the predicted box 
As shown in (a) in Fig. 3, for the convenience of observation and calculation, assuming that 
the center point of the object's ground-true bounding box and the predicted bounding box 
coincide, the calculation formula of the intersection over union(IOU) is as follows: 
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h wIOU

h b w a
×

=
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                                               (2) 

According to (1) and (2), the following quadratic equation can be obtained: 
2

2 ( 1) 0
4

IOU hwa hwa
IOU
−

+ + =                                            (3) 

where a  is the unknown item, w , h  and IOU  are all known items. 
According to the root formula and 0a > , the value of a  can be obtained: 

1( )

2

IOUhw h h
IOUa

−
− + −

=                                              (4) 

The value of b  can be obtained according to (1): 
 

1( )

2

IOUh hw h h
IOU

b
w

 −
− + − 
 =                                        (5) 

According to the above calculation, in the first case, the distance 1d  between the upper left 
corner of the predicted bounding box and the ground-true bounding box is: 

2 2
1d a b= +                                                   (6) 

3.1.2 The predicted box completely falls within the ground-truth box 
As shown in (b) in Fig. 3, the calculation formula of the IOU is as follows: 

( 2 )( 2 )h b w aIOU
h w

− −
=

×
                                              (7) 

According to (1) and (7), the following quadratic equation can be obtained: 
 

2
2 (1 ) 0

4
IOU wa wa −

− + =                                             (8) 

where a  is the unknown item, w , h  and IOU  are all known items. 
According to the root formula, the value of a  can be obtained: 

(1 )
2

w IOUa ±
=                                                         (9) 

Since 2w a−  represents the width of the prediction bounding box in (7), so 2 0w a− > , 
and the value of a  can be obtained as follows: 

(1 )
2

w IOUa −
=                                                         (10) 

The value of b  can be obtained according to (1): 
(1 )

2
h IOUb −

=                                                         (11) 

According to the above calculation, in the second case, the distance 2d  between the upper 
left corner of the predicted bounding box and the ground-true bounding box is: 

2 2
2d a b= +                                                             (12) 
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3.1.3 The predicted box partially overlaps with the ground-truth box 
As shown in (c) in Fig. 3, the calculation formula of the IOU is as follows: 

( )( )
2 ( )( )

h b w aIOU
hw h b w a

− −
=

− − −
                                           (13) 

According to (1) and (13), the following quadratic equation can be obtained: 
 

2 212 0
1

IOUa wa w
IOU

−
− + =

+
                                             (14) 

where a  is the unknown item, w , h  and IOU  are all known items. 
According to the root formula, the value of a  can be obtained: 

2(1 )
1

IOUa w
IOU

= ±
+

                                                     (15) 

Since 0w a− >  in (13), so the value of a  can be obtained: 
2(1 )

1
IOUa w
IOU

= −
+

                                                     (16) 

The value of b  can be obtained according to (1): 
2(1 )

1
IOUb h
IOU

= −
+

                                                     (17) 

According to the above calculation, in the second case, the distance 3d  between the upper 
left corner of the predicted bounding box and the ground-true bounding box is: 

2 2
3d a b= +                                                               (18) 

3.1.4 The Gaussian ellipse prediction region 
For each object, we choose the a  and b  corresponding to the minimum value of 

1 2 3min( , , )d d d d=  in the above three cases as the minor semi-axis and major semi-axis of the 
generated ellipse. Then the Gaussian function of the ellipse region can be expressed as: 
 

22

2 2

( )( )
2 2( , ) e

yx

a b

y px p

f x y σ σ

 −− − +
 
 =





                                              (19) 
where aσ  and bσ  are the variances corresponding to a  and b , respectively. In the Gaussian 
distribution, the area of the ( 3 , 3 )µ σ µ σ− +  interval accounts for 99.7% of the total area 
under the Gaussian curve, so the values outside this interval are close to 0 and can be ignored. 
Therefore, choosing 3σ  as the Gaussian radius: 

1
3aσ σ=                                                                     (20) 

1
3b bσ =                                                                      (21) 

Since the coordinates of the upper left corner of the same object are consistent with the 
center point coordinates, the Gaussian ellipse prediction range of the center point can be 
obtained by mapping the Gaussian ellipse range of the corner point to the center point of the 
object. In the Gaussian ellipse predicted range, the center point's value is 1. The further away 
from the center, the smaller the value. The value near the ellipse boundary gradually 
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approaches 0, and the value outside the boundary is 0. 

3.2 The process of size components encoding 
In order to compress the vast difference in the width and height of the objects, we encoded 
them as the diagonal half-length of the object's boundary box and the cosine of the center 
Angle. The coding process is shown in Fig. 4. 
 

Encoder
H

W

c
θ

 
Fig. 4. Encoding process. Where H  is the height of the bounding box and W  is the width of the 
bounding box. c  is the half-length of the diagonal after encoding, and θ  is the central angle after 

encoding. 
 

As shown in Fig. 4, a right triangle with the center angle θ  as the vertex is formed between 
the bounding box's diagonal and the vertical centerline passing through the object's center 
point. We encoded the width and height as c  and cosθ . The model will not predict the width 
and height but directly predict c  and cosθ . According to the Pythagorean theorem, the 
solution space of the re-encoded hypotenuse length c (that is, the half-length of the diagonal) 
is smaller than the width and height. In addition, no matter how the width and height change, 
the variation range of cosθ  is constantly kept between (0, 1). After coding the object in the 
COCO dataset, the size components variation range is shown in Table 2.  

 
Table 2. The cosθ  and c  range of objects in the MS COCO datasets. 

Dataset cosθ  range c  range 
MS COCO (0,1) [2,450] 

 
Compared with Table 1, the re-encoded components significantly compress the solution 

space. The calculation process is expressed as follows: 
2 2

2
W Hc +

=                                                             (22) 

cos
2
H
c

θ =                                                                   (23) 

Because the semantic information predicted by the network has been changed, we adjust 
the loss function responsible for width and height prediction in the original network. We use 

( ) ( ) ( ) ( )
1 1( , , , )k k k kx y w h  to denote the bounding box range of the object k , which belongs to the 

category kc . Where ( )
1

kx  and ( )
1

ky  are the abscissa and ordinate of the lower-left corner vertex 
of the object k , respectively. ( )kw  and ( )kh  are the width and height of the object k , 

respectively. The center point of the object k  can be denoted as 
( ) ( )

( ) ( )
1 1( , )

2 2

k k
k k

k
w hp x y= + − . 
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For each possible object center point kp , we use the 1L  loss function to regress the encoded 
component ( ,cos )k k

ks c θ= . The loss function is expressed as follows: 

1

1 ˆ
k

N

p k
k

Lc S s
N

θ
=

= −∑                                                    (24) 

where N  is the number of samples, and ˆ
kPS  is the predicted value of ks  corresponding to the 

center point kp . The loss calculation process of the prediction component is shown in Fig. 5. 

Backbone
Size Component 

feature map
(channel=2)

L1 Loss

Input c and cosθ

    
  θ

 
Fig. 5. The loss function calculation process. 

 
As shown in Fig. 5, after the input image passes through the backbone, a feature map with 

two channels is output, and the two channels are the predicted values of c  and cosθ , 
respectively. By calculating the loss value, the network will gradually obtain better and more 
accurate values of c  and cosθ . 

3.3 The process of size components joint decoding 
In CenterNet, the object’s width and height are independently predicted in the feature map 
with two channels, which leads to inconsistency in prediction accuracy, such as the prediction 
accuracy of one component is high and the other is low. To solve this problem, we jointly 
decoded the c  and cosθ  obtained in Section 3.2 into two length components in the horizontal 
and vertical directions of the object center point coordinates, respectively. Because the values 
of the two components depend on the joint decoding of c  and cosθ  simultaneously, there is 
a strong internal dependency between the decoded two components, enhancing the consistency 
of prediction accuracy. The decoding process is shown in Fig. 6. 
 

Decoder

c
cosθ

 
Fig. 6. Decoding process. Where a  is the decoded vertical length component and b  is the horizontal 

length component. 
 

As shown in Fig. 6, c  and cosθ  can be decoded into the vertical length component a  
and the horizontal length component b  of the center point using the trigonometric function. 
The calculation process is expressed as follows: 

 
cosa cθ= ×                                                                 (25) 
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2 2b c a= −                                                                (26) 

Because the definition domain of θ  is between (0, )
2
π , so the value domain of cosθ  is 

between (0, 1). Moreover, c  is a positive number, so zero or negative prediction errors will 
not occur. In addition, applying the smaller value range of cosθ  to adjust c  can make a  and 
b  have better accuracy stability and uniformity. 

We can obtain the predicted object's bounding box position by calculating the decoded 
length components and the predicted coordinates of the center point of the corresponding 
position. The calculation process is expressed as follows: 

1
ˆ ˆ ˆ{( , )}n
c i i iP x y ==                                                             (27) 

:
ˆ ˆ ˆ( , )c left bottom i i i iP x b y a− = − +                                             (28) 

:
ˆ ˆ ˆ( , )c right top i i i iP x b y a− = + −                                               (29) 

where ĉP  is the set of n detected center points coordinates of class c . ˆix  and ˆiy  are the 
abscissa and ordinate prediction values of the center point of the i-th object in class c , 
respectively. ia  and ib  are the decoded length components corresponding to the center point 

of the i-th object in class c . :ĉ left bottomP −  and :ĉ right topP −  are the coordinates of the lower-left and 
upper-right bounding boxes of the i-th object in class c , respectively. The bounding box 
generation process is shown in Fig. 7. 
 

ia

ib

( , )i iP x y ( , )i iP x y

( , )− − +i i i iL B x b y a

( , )− + −i i i iR T x b y a

 
Fig. 7. The bounding box generation process. 
 

As shown in Fig. 7, the decoded length components a  and b  can be used to predict the 
object bounding box efficiently and accurately. In addition, there is no complex calculation in 
the decoding and prediction process, which will not affect the inference speed of the model. 

4. Experiments 

4.1 Datasets 
To evaluate the effectiveness of the proposed algorithm in this paper, we apply the proposed 
algorithm to the baseline model CenterNet and conduct extensive experiments on the 
Microsoft COCO[12] dataset. Microsoft COCO is a large image dataset constructed by 
Microsoft corporation for object detection, semantic segmentation, key point detection, and 
other visual tasks. It has been widely used in object detection tasks and recognized by the 
authority. We selected the most widely used COCO 2017 version for model training and 
testing. This version consists of a train set with 118,287 images, a validation set with 5,000 
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images, and a test set with 40,670 images. The total number of images was 163,957 in 80 
categories. The COCO dataset images contain natural and common object images in daily life. 
Compared with other datasets, the background is more complex, the number of objects is larger, 
and there are many smaller objects, so the visual task on the COCO dataset is more challenging. 

4.2 Evaluation metric  
We use train 2017 and Val 2017 in the COCO dataset to train and verify the model and evaluate 
our proposed algorithm in test 2017. Unlike other datasets, the COCO dataset uses the new 
AP metric instead of traditional mAP as the most important metric for detection performance 
evaluation, which is calculated based on 10 IoU thresholds and the mean of all 80 classes. The 
COCO dataset provides 50AP  and 75AP  to evaluate the model's performance with IoU 
thresholds of 50 and 75, respectively. In addition, the COCO dataset also provides SAP , MAP , 
and LAP  to evaluate small objects with pixel areas less than 32 32× , medium objects with 
pixel areas between 32 32×  and 96 96× , and large objects with pixel areas greater than 
96 96× , respectively. 

4.3 Implement details 
Compared with the baseline model CenterNet, the improved model proposed in this paper 
mainly has the following two changes: 
1、The method of the object’s center point mapping to the Heatmap.  

In Centernet, use the following formula to map all the object’s center points in the group 
truth to the Heatmap: 
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By using (30), CenterNet can map the center point coordinates of all objects into a heatmap 
with a limited range of Gaussian circles when loading data. 

In our improved model, (30) needs to be replaced by (19) proposed in Section 3.1.4. 
Through (19), the improved model can map the coordinates of the center points of all 

objects into a heatmap with a limited range of a Gaussian ellipse when loading data. 
 

2、The method of the size components mapping. 
In CenterNet, the height and width of all objects in the ground truth are directly loaded as 

size components during data loading, and the predicted values of height and width are directly 
output during prediction. 

In our improved model, when loading data, the height and width of all objects in the ground 
truth should be coded according to the method proposed in Section 3.2. The predicted output 
value should be decoded during the prediction according to the method proposed in Section 
3.3. 

With the above changes, we can start training and reasoning just like CenterNet. The 
training and reasoning processes were consistent with the baseline model CenterNet. 

4.4 Parameter setting 
We selected Hourglass-104 as the backbone and set the input size to 512 512× , the same 

as CenterNet. The model was trained for 100 epochs using the stochastic gradient descent SGD 
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algorithm, and the batch size was set to 32. The learning rate is dynamically adjusted using 
warm-up and cosine annealing functions. The number of warm-up steps is set to 5, the initial 
learning rate is set to 0.00025, and the momentum and weight decay are set to 0.9 and 0.0005, 
respectively. Image enhancement methods consistent with CenterNet include random flip, 
random scaling (between 0.6 to 1.3), cropping, and color jittering. The hardware and software 
environment of the experiment is shown in Table 3. 
 

Table 3. The software and hardware environment. 
Equipment Type 

CPU: Intel core i9-9900k 
GPU: NVIDIA GeForce RTX 3090 
RAM 64.0 GB 
OS: WIN10 64-bit 

Develop software: Python3.8+Pythorch10.0+cuda11.3+Pycharm 

4.5 Loss Comparision 
In order to more intuitively demonstrate the improved convergence speed and detection 
performance of the baseline model by the proposed algorithm, we recorded the central point 
prediction loss and total loss of each epoch of the baseline model and the improved model 
during training, respectively. The results are shown in Fig. 8 to Fig. 9. 

 

 

Fig. 8. The predicted loss curve of the central point. 
 

 

 
Fig. 9. The total loss curves. 
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As can be seen from the above comparison figures, compared with the baseline, the 

improved model has a faster convergence speed, lower loss value, and smoother loss curve, 
reflecting the improvement of model stability and accuracy to a certain extent. 

4.6 Results on MS COCO  
To evaluate the effectiveness of the proposed algorithm, we provide a comparison of results 
between different detectors. Table 4 shows the comparison results between our proposed 
algorithm and other state-of-the-art detectors on the MS COCO test 2017, including two-stage, 
single-stage, anchor-base, and anchor-free object detectors. In order to simplify the expression, 
we call the improved model proposed in this paper as Enhanced-CenterNet, abbreviated as E-
CenterNet. The results of E-CenterNet are obtained by training with the parameters set in 
Section 4.4, and the results of other detectors are from their corresponding papers. 
 

Table 4. Comparison results with other state-of-the-art methods on MS COCO. 
Method Backbone AP AP50 AP75 APS APM APL 

anchor-based detectors 
Mask R-CNN[18] 

ResNet-101 
 

38.2 60.3 41.7 20.1 41.1 50.2 
Cascade R-CNN[19] 42.8 62.1 46.3 23.7 45.5 55.2 

SSD513[20] 31.2 50.4 33.3 10.2 34.5 49.8 
DSSD513[22] 33.2 53.3 35.2 13.0 35.4 51.1 
RetinaNet[11] 39.1 59.1 42.3 21.8 42.7 50.2 
YOLO v2[24] Darknet-19 21.6 44.0 19.2 5.0 22.4 35.5 
YOLO v3[25] Darknet-53 33.0 57.9 3434 18.3 35.4 41.9 
YOLO v4[27] CSPDarknet-53 43.5 65.7 47.3 26.7 46.7 53.3 

anchor-free detectors 
FCOS[35] ResNeXt-101 42.1 62.1 45.2 25.6 44.9 52.0 

GA-RPN[40] ResNet-50 39.8 59.2 43.5 21.8 42.6 50.7 
FoveaBox[37]  

ResNeXt-101 
 

42.1 61.9 45.2 24.9 46.8 55.6 
ATSS[41] 43.6 62.1 47.4 26.1 47.0 53.6 

Grid R-CNN[42] 43.2 63.0 46.6 25.1 46.5 55.2 
FSAF[36] ResNeXt-64x4d-101 42.9 63.8 46.3 26.6 46.2 52.7 

RepDet[44] ResNet-101-DCN 42.8 65.0 46.3 24.9 46.2 54.7 
CornerNet-Lite[43] Hourglass-54 43.2 - - 24.4 44.6 57.3 

CornerNet[38]  
Hourglass-104 

 

40.5 56.5 43.1 19.4 42.7 53.9 
ExtremNet[39] 40.1 55.3 43.2 20.3 43.2 53.1 
CenterNet[13] 42.1 61.1 45.9 24.1 45.5 52.8 

ours 
E-CenterNet Hourglass-104 44.7 63.4 47.8 27.1 46.1 55.5 

 
As shown in Table 4, the AP of E-CenterNet reaches 44.7%, which is the best among all 

compared models. It is 1.9% higher than the Cascade R-CNN with the highest AP in the two-
stage detectors, 1.2% higher than the YOLO v4 with the highest AP in anchor-base detectors, 
1.1% higher than ATSS with the highest AP in anchor-free detectors , and 2.6% higher than 
the baseline CenterNet. The E-CenterNet also achieved excellent accuracy in comparing 
different IOU threshold indexes, especially in the more stringent 75AP  index, which reached 
the best accuracy of all the comparison models. It is 0.4% higher than ATSS, which has the 
best 75AP  accuracy in the comparison model, and 1.9% higher than CenterNet, the baseline 
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model in this paper. It shows that the improved algorithm proposed in this paper can effectively 
improve the detector's performance under stringent performance requirements. In evaluating 
detection performance metrics for different size objects, E-CenterNet also achieved the best 
accuracy. Especially on the most challenging small object detection performance index SAP , 
E-CenterNet is 3.0% higher than the baseline CenterNet and 0.4% higher than the YOLO v4 
with the highest SAP  in the comparison model, significantly improving the detection accuracy 
for small objects. It can be seen from the above comparative analysis that the improved 
algorithm proposed in this paper can significantly improve the detection performance of the 
model and the detection ability under severe conditions. 
 

4.7 Ablation studies 
To further evaluate the effectiveness of the different components of our proposed algorithm 
and the impact on detection performance, we formed CenterNet+GER based on Gaussian 
ellipse region prediction and CenterNet+SSS based on small solution space regression. Where 
GER is the abbreviation of Gaussian elliptic region, SSS is the abbreviation of small analytic 
space. We tested the models based on the two improved methods on MS COCO dataset, and 
the results are shown in Table 5. 
 

Table 5. The effect of different improved components on detection accuracy of baseline. 
Method Backbone AP AP50 AP75 APS APM APL 

CenterNet Hourglass-104 42.1 61.1 45.9 24.1 45.5 52.8 
CenterNet+GER Hourglass-104 43.7 62.6 47.0 26.5 46.3 54.8 
CenterNet+SSS Hourglass-104 43.1 61.7 46.4 26.1 45.6 54.0 

 
As can be seen from Table 5, the AP accuracy of CenterNet+GRE using the Gaussian 

ellipse region prediction method reaches 43.7%, and the accuracy is improved by 1.6% 
compared with CenterNet using the Gaussian circle region prediction method. The AP of 
CenterNet+SSS with small solution space regression is 43.1%, which is 1.0% higher than that 
of CenterNet with direct regression width and height. In the 50AP  index, the acureacy of 
CenterNet+GER and CenterNet+SSS are 1.5% and 0.6% higher than the baseline. Under the 
more stringent IOU threshold of 75AP , the 75AP  of CenterNet+GER and CenterNet+SSS are 
1.1% and 0.5% higher than the baseline, respectively. The accuracy of the improved model 
based on different components is also greatly improved on the indexes used to evaluate objects 
of different sizes. Especially on the most difficult small object indicator SAP , the accuracy of 
CenterNet+GER and CenterNet+SSS are 2.4% and 2.0% higher than the baseline, respectively. 
It can be seen from the above analysis that both the center point prediction method based on 
the Gaussian ellipse region and the size component regression method based on the small 
solution space proposed in this paper can significantly improve the detection performance. 
Because the center point prediction method based on the Gaussian elliptic region can more 
reasonably and accurately define the potential region of the object's center point, it can predict 
the target center point more accurately. In addition, the size component regression method 
based on the small solution space can effectively compress the regression space of the object 
size, so the prediction of the object size is more stable and accurate, further improving the 
model's detection performance. 
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4.8 Qualitative evaluation 
We provide a qualitative comparison between the improved model and CenterNet to illustrate 
further our proposed method's superiority in complex scene object detection and bounding box 
prediction accuracy. 
 

 
Fig. 10. Comparison of prediction results in complex scenarios. The objects with detection scores 

higher than 0.5 are shown. In each pair, the left side is the detection results of CenterNet. The right 
side is our improved model. 

 

 

Fig. 11. Quality comparison of bounding box predictions. The objects with detection scores higher 
than 0.5 are shown. In each pair, the left side is the detection results of CenterNet. The right side is our 

improved model. 
 

Fig. 10 shows the detection performance comparison between the improved and baseline 
models in complex scenarios. In complex scenes, there are usually many complex situations 
such as mutual occlusion, uneven illumination, and dense connections between objects, which 
pose a higher challenge to the performance of the detectors. As shown in Fig. 10, the improved 
model proposed in this paper successfully detects most of the objects that the CenterNet does 
not detect, which are complicated by small size and poor visual features. It fully shows that 
the algorithm proposed in this paper can significantly improve the object detection ability of 
the model in complex scenes. Fig. 11 compared the improved and baseline models for the 
prediction quality of the object bounding box. As shown in Fig. 11, the accuracy of the 
bounding box position predicted by CenterNet has obvious inconsistency. Because 
CenterNet's prediction of width and height is independent, there is no correlation between the 
prediction components. Therefore, in some pictures, the width prediction is accurate, but the 
height is inaccurate, or the high prediction is accurate, but the width is inaccurate. Compared 
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with CenterNet, we compressed the object size component's regression solution space by 
recoding the object's width and height and generating the object size by joint decoding. 
Therefore, when the detection accuracy is similar, our improved model has higher accuracy 
and consistency in predicting the bounding box position. The above qualitative comparison 
results fully show that the improved algorithm proposed in this paper can significantly improve 
the detection accuracy of the model in complex scenes and the prediction quality of the object 
bounding box, thus significantly improving the model's detection performance. 

5. Conclusion 
In this paper, we proposed a center point prediction algorithm based on the Gaussian elliptic 
region to more accurately predict the object's center point with a large difference in size and 
improve the accuracy of object position prediction. And then, we proposed the size component 
regression algorithm based on a small solution space to speed up the convergence and improve 
the stability and consistency. The experiment results fully show that our method can 
significantly enhance detectors' accuracy and detection ability. However, the method based on 
central point prediction also has the following shortcomings, which are also the focus of our 
follow-up research and solution. In the training process, if some objects of the same class are 
too close, the downsampling operation may cause the center points of these objects to overlap 
and eventually cause the model to train these different objects as the same object. Similarly, 
in the predictive reasoning process, if the center points of some objects of the same class also 
overlap after downsampling, then the model can only predict one object. 
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