• Title/Summary/Keyword: Cipher Algorithm

Search Result 318, Processing Time 0.038 seconds

Toward a New Safer Cybersecurity Posture using RC6 & RSA as Hybrid Crypto-Algorithms with VC Cipher

  • Jenan.S, Alkhonaini;Shuruq.A, Alduraywish;Maria Altaib, Badawi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.164-168
    • /
    • 2023
  • As our community has become increasingly dependent on technology, security has become a bigger concern, which makes it more important and challenging than ever. security can be enhanced with encryption as described in this paper by combining RC6 symmetric cryptographic algorithms with RSA asymmetric algorithms, as well as the Vigenère cipher, to help manage weaknesses of RC6 algorithms by utilizing the speed, security, and effectiveness of asymmetric algorithms with the effectiveness of symmetric algorithm items as well as introducing classical algorithms, which add additional confusion to the decryption process. An analysis of the proposed encryption speed and throughput has been conducted in comparison to a variety of well-known algorithms to demonstrate the effectiveness of each algorithm.

A Hardware Implementation of SIMECK-64/128 Block Cipher Algorithm (SIMECK-64/128 블록암호 알고리듬의 하드웨어 구현)

  • Kim, Min-Ju;Jeong, Young-su;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.229-231
    • /
    • 2021
  • In this paper, we describe a hardware design of the SIMECK block cipher algorithm that can be implemented in lightweight hardware with appropriate security strength. To achieve fast encryption and decryption operations, it was designed using two-step method that reduces the number of operation rounds. The designed SIMECK cryptographic core was implemented in Arty S7-50 FPGA device and its hardware operation was verified with a GUI using Python.

  • PDF

Implementation of fast stream cipher AA128 suitable for real time processing applications (실시간 처리 응용에 적합한 고속 스트림 암호 AA128 구현)

  • Kim, Gil-Ho;Cho, Gyeong-Yeon;Rhee, Kyung Hyune;Shin, Sang Uk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2207-2216
    • /
    • 2012
  • Recently, wireless Internet environment with mobile phones and wireless sensor networks with severe resource restrictions have been actively studied. Moreover, an overall security issues are essential to build a reliable and secure sensor network. One of secure solution is to develop a fast cryptographic algorithm for data encryption. Therefore, we propose a 128-bit stream cipher, AA128 which has efficient implementation of software and hardware and is suitable for real-time applications such as wireless Internet environment with mobile phones, wireless sensor networks and Digital Right Management (DRM). AA128 is stream cipher which consists of 278-bit ASR and non-linear transformation. Non-linear transformation consists of Confusion Function, Nonlinear transformation(SF0 ~ SF3) and Whitening. We show that the proposed stream cipher AA128 is faster than AES and Salsa20, and it satisfies the appropriate security requirements. Our hardware simulation result indicates that the proposed cipher algorithm can satisfy the speed requirements of real-time processing applications.

The Hardware Design and Implementation of a New Ultra Lightweight Block Cipher (새로운 초경량 블록 암호의 하드웨어 설계 및 구현)

  • Gookyi Dennis, A.N.;Park, Seungyong;Ryoo, Kwangki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.103-108
    • /
    • 2016
  • With the growing trend of pervasive computing, (the idea that technology is moving beyond personal computers to everyday devices) there is a growing demand for lightweight ciphers to safeguard data in a network that is always available. For all block cipher applications, the AES is the preferred choice. However, devices used in pervasive computing have extremely constraint environment and as such the AES will not be suitable. In this paper we design and implement a new lightweight compact block cipher that takes advantage of both S-P network and the Feistel structure. The cipher uses the S-box of PRESENT algorithm and a key dependent one stage omega permutation network is used as the cipher's P-box. The cipher is implemented on iNEXT-V6 board equipped with virtex-6 FPGA. The design synthesized to 196 slices at 337 MHz maximum clock frequency.

A Hardware Implementation of Ultra-Lightweight Block Cipher PRESENT-80/128 (초경량 블록암호 PRESENT-80/128의 하드웨어 구현)

  • Cho, Wook-Lae;Kim, Ki-Bbeum;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.430-432
    • /
    • 2015
  • This paper describes a hardware implementation of ultra-lightweight block cipher algorithm PRESENT-80/128 that supports for two master key lengths of 80-bit and 128-bit. The PRESENT algorithm that is based on SPN (substitution and permutation network) consists of 31 round transformations. A round processing block of 64-bit data-path is used to process 31 rounds iteratively, and circuits for encryption and decryption are designed to share hardware resources. The PRESENT-80/128 crypto-processor designed in Verilog-HDL was verified using Virtex5 XC5VSX-95T FPGA and test system. The estimated throughput is about 550 Mbps with 275 MHz clock frequency.

  • PDF

An Efficient Block Cipher Implementation on Many-Core Graphics Processing Units

  • Lee, Sang-Pil;Kim, Deok-Ho;Yi, Jae-Young;Ro, Won-Woo
    • Journal of Information Processing Systems
    • /
    • v.8 no.1
    • /
    • pp.159-174
    • /
    • 2012
  • This paper presents a study on a high-performance design for a block cipher algorithm implemented on modern many-core graphics processing units (GPUs). The recent emergence of VLSI technology makes it feasible to fabricate multiple processing cores on a single chip and enables general-purpose computation on a GPU (GPGPU). The GPU strategy offers significant performance improvements for all-purpose computation and can be used to support a broad variety of applications, including cryptography. We have proposed an efficient implementation of the encryption/decryption operations of a block cipher algorithm, SEED, on off-the-shelf NVIDIA many-core graphics processors. In a thorough experiment, we achieved high performance that is capable of supporting a high network speed of up to 9.5 Gbps on an NVIDIA GTX285 system (which has 240 processing cores). Our implementation provides up to 4.75 times higher performance in terms of encoding and decoding throughput as compared to the Intel 8-core system.

Design of YK2 Cipher Algorithm for Electronic Commerce Security (전자상거래 보안을 위한 YK2 암호 알고리즘 설계)

  • Kang, Young-Ku;Rhew, Sung-Yul
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.10
    • /
    • pp.3138-3147
    • /
    • 2000
  • EC(Electronic Commerce) which is cone the virtual space through Internet, has the advantage of time and space. On the contrary, it also has weak point like security probelm because anybody can easily access to the system due to open network attribute of Internet. Theretore, we need the solutions that protect the EC security problem for safe and useful EC activity. One of these solution is the implemonlation of a strong cipher algorithm. YK2(YoungKu Kang) cipher algorithm proposed in this paper is advantage for the EC security and it overcomes the limit of the current 6/1 bits block cipher algorithm using 128 bits key length for input, output, encryption key and 32 rounds. Moreover, it is degigned for the increase of time complexity and probability calculation by adapting more complex design for key scheduling regarded as one of the important element effected to enciyption.

  • PDF

Optimization of LEA Quantum Circuits to Apply Grover's Algorithm (그루버 알고리즘 적용을 위한 LEA 양자 회로 최적화)

  • Jang, Kyung Bae;Kim, Hyun Jun;Park, Jae Hoon;Song, Gyeung Ju;Seo, Hwa Jeong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.4
    • /
    • pp.101-106
    • /
    • 2021
  • Quantum algorithms and quantum computers can break the security of many of the ciphers we currently use. If Grover's algorithm is applied to a symmetric key cipher with n-bit security level, the security level can be lowered to (n/2)-bit. In order to apply Grover's algorithm, it is most important to optimize the target cipher as a quantum circuit because the symmetric key cipher must be implemented as a quantum circuit in the oracle function. Accordingly, researches on implementing AES(Advanced Encryption Standard) or lightweight block ciphers as quantum circuits have been actively conducted in recent years. In this paper, korean lightweight block cipher LEA was optimized and implemented as a quantum circuit. Compared to the previous LEA quantum circuit implementation, quantum gates were used more, but qubits were drastically reduced, and performance evaluation was performed for this tradeoff problem. Finally, we evaluated quantum resources for applying Grover's algorithm to the proposed LEA implementation.

Dynamic Allocation Algorithm for enhancement of transmission performance on a radio encryption system (무선암호시스템에서 전송성능 개선을 위한 동적할당 알고리듬)

  • 홍진근;윤장홍;장병화;황찬식
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.1
    • /
    • pp.3-12
    • /
    • 2001
  • In this paper, a synchronized stream encryption system for secure link layer communication in a radio channel is designed. Interleaving scheme which is used to enhance the transmission performance over a fading channel is applied to the encrypted information. A designed synchronous scream cipher system consists of a keystream generator, a synchronization pattern generator and a session key generator. The structure of a synchronous stream cipher system with periodic synchronization is composed of the encrypted information which consists of a synchronization pattern, an error correcting coded session key, an encrypted data in a period of synchronization. In this paper, interleaving scheme using dynamic allocation a1gorithm(DAA) is applied the encrypted information. The BER of the DAA has been slightly higher than that of the SAA(static allocation algorithm).

The properties Analysis of IDEA algorithm (IDEA 알고리즘의 특성 분석)

  • 김지홍;장영달;윤석창
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3A
    • /
    • pp.399-405
    • /
    • 2000
  • In this paper, we deal with block cipher algorithm IDEA(international data encryption algorithm), previously known as typical block cipher system. first of all, analysing key scheduler we classify the key sequences with the used key bit and the unused key bits in each round. with this properties we propose the two method, which are differential analysis using differences of plaintext pairs and linear analysis using LSB bit of plaintexts and key sequences.

  • PDF