• Title/Summary/Keyword: Chromosomal location

Search Result 28, Processing Time 0.031 seconds

Characterization of F2 Progenies of Wound Minus Arabidopsis Mutant Crossed with Wild Type Plant

  • Park, Sanggyu
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.12-17
    • /
    • 2000
  • To understand the signal transduction pathway that leads to the activation of the wound-inducible proteinase inhibitor II (pin2) promoter. $F_2$ progenies of wound (-) mutant crossed with wild-type Arabidopsis plants were biochemically and genetically characterized. Wound (-) mutant was derived from transgenic Arabidopsis plants containing bacterial cytosine deaminase gene under the control of pin2 promoter. The cytosine deaminase assays indicated that wound (-) mutant is a dominant inhibitor of wound-inducibility as only 3 of the $20F_2$ progenies showed cytosine deaminase (CDase) activity, To construct a structural map of the wound (-) mutant chromosomal regions, cleaved, amplified polymorphic sequences (CAPS) markers that cover all Chromosomes were used. Chromosomal regions covered by three different CAPS markers could be candidates for further fine mapping of the location of the wound (-) mutation. g4026, RGA1 and ASA1 located at 84.9 on recombinant inbred (RI) map of chromosome I, at 1.75 on RI map of chromosome II, and 18.35 on RI map of chromosome V, respectively.

  • PDF

Genomic DNA Chip: Genome-wide profiling in Cancer

  • 이종호
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.10a
    • /
    • pp.61-86
    • /
    • 2001
  • All cancers are caused by abnormalities in DNA sequence. Throughout life, the DNA in human cells is exposed to mutagens and suffers mistakes in replication, resulting in progressive, subtle changes in the DNA sequence in each cell. Since the development of conventional and molecular cytogenetic methods to the analysis of chromosomal aberrations in cancers, more than 1,800 recurring chromosomal breakpoints have been identified. These breakpoints and regions of nonrandom copy number changes typically point to the location of genes involved in cancer initiation and progression. With the introduction of molecular cytogenetic methodologies based on fluorescence in situ hybridization (FISH), namely, comparative genomic hybridization (CGH) and multicolor FISH (m-FISH) in carcinomas become susceptible to analysis. Conventional CGH has been widely applied for the detection of genomic imbalances in tumor cells, and used normal metaphase chromosomes as targets for the mapping of copy number changes. However, this limits the mapping of such imbalances to the resolution limit of metaphase chromosomes (usually 10 to 20 Mb). Efforts to increase this resolution have led to the "new"concept of genomic DNA chip (1 to 2 Mb), whereby the chromosomal target is replaced with cloned DNA immobilized on such as glass slides. The resulting resolution then depends on the size of the immobilized DNA fragments. We have completed the first draft of its Korean Genome Project. The project proceeded by end sequencing inserts from a library of 96,768 bacterial artificial chromosomes (BACs) containing genomic DNA fragments from Korean ethnicity. The sequenced BAC ends were then compared to the Human Genome Project′s publicly available sequence database and aligned according to known cancer gene sequences. These BAC clones were biotinylated by nick translation, hybridized to cytogenetic preparations of metaphase cells, and detected with fluorescein-conjugated avidin. Only locations of unique or low-copy Portions of the clone are identified, because high-copy interspersed repetitive sequences in the probe were suppressed by the addition of unlabelled Cotl DNA. Banding patterns were produced using DAPI. By this means, every BAC fragment has been matched to its appropriate chromosomal location. We have placed 86 (156 BAC clones) cytogenetically defined landmarks to help with the characterization of known cancer genes. Microarray techniques would be applied in CGH by replacement of metaphase chromosome to arrayed BAC confirming in oncogene and tumor suppressor gene: and an array BAC clones from the collection is used to perform a genome-wide scan for segmental aneuploidy by array-CGH. Therefore, the genomic DNA chip (arrayed BAC) will be undoubtedly provide accurate diagnosis of deletions, duplication, insertions and rearrangements of genomic material related to various human phenotypes, including neoplasias. And our tumor markers based on genetic abnormalities of cancer would be identified and contribute to the screening of the stage of cancers and/or hereditary diseases

  • PDF

Cytogenetic Analysis in Korean Head and Neck Cancer Cell Lines: Comparative Genomic Hybridization(CGH) and Array-CGH (두경부 편평상피세포암 세포주의 염색체 이상 분석: 비교유전체보합법과 Array 비교유전체보합법)

  • Shin, You-Ree;Park, Soo-Yeun;Lee, Dong-Wook;Kim, Han-Su;Go, Young-Min;Park, Hyun-Joo;Choung, Sung-Min
    • Korean Journal of Head & Neck Oncology
    • /
    • v.24 no.1
    • /
    • pp.33-42
    • /
    • 2008
  • Head and neck squamous cell carcinoma(HNSCC) is notorious for its poor outcome and increasing incidence. But, the studies of cytogenetic analysis in HNSCC are relatively rare, because of difficulties in culturing solid tumor cells and complexity in chromosomal DNA abberations associated with the lesions. The purpose of this study is to evaluate the location of chromosomal aberrations in Korean HNSCC cell lines (SNU-1041, 1066, and 1076) with comparative genomic hybridization(CGH) and array based CGH(array-CGH). Chromosomal gains of 3q23-q27, 5p13-p15.3, 7p21-pter, 8q11.2-q12, 8q21.1-qter, 9q22-q34, 16q22-q24, and 20q11.2-qter, as well as chromosomal losses on 3p10-p14 were found in all 3 SNU cell lines. Losses on 3p15- p23, 4q22-q27, 4q31.3-qter, 6q14-q15, 7q31-q34, 8p12-pter, 18q21-q23, and 21q11.2-q12 were observed in 2 of 3 cell lines. In array-CGH, many genes were altered including gains of PIK3CA, MYC, EVI1, MAD1L1 genes and losses of SERPIN genes. These aberrations of gene and chromosome coincide with other results of study, generally. These data about the patterns of chromosomal aberrations could be a basic step for understanding more detailed genetic events in the carcinogenesis and also provide information for diagosis and treatment in HNSCC.

Chromosomal Information of 1,144 Korean BAC Clones

  • Park, Mi-Hyun;Lee, Hee-Jung;Kim, Kwang-Joong;Jeon, Jae-Pil;Lee, Hye-Ja;Kim, Jun-Woo;Kim, Hung-Tae;Cha, Hyo-Soung;Kim, Cheol-Hwan;Choi, Kang-Yell;Park, Chan;Oh, Berm-Seok;Kim, Ku-Chan
    • Genomics & Informatics
    • /
    • v.4 no.4
    • /
    • pp.141-146
    • /
    • 2006
  • We sequenced 1,841 BAC clones by terminal sequencing, and 1,830 of these clones were characterized with regard to their human chromosomal location and gene content using Korean BAC library constructed at the Korean Science (KCGS). Sequence analyses of the 1,830 BAC clones was performed for chromosomal assignment: 1,144 clones were assigned to a single chromosome, 190 clones apparently assigned to more than one chromosome, and 496 clones to no chromosome. Evaluating gene content of the 1,144 BAC clones, we found that 706 clones represented 1,069 genes of which 415 genes existed in the BAC clones covering the full sequence of the gene, 180 genes covering a $50%{\sim}99%$, and 474 genes covering less than 50% of the gene coverage. The estimated covering size of the KBAC clones was 73,379 kilobases (kb), in total corresponding to 2.3% of haploid human genome sequence. The identified BAC clones will be a public genomic resource for mapped clones for diagnostic and functional studies by Korean scientists and investigators worldwide.

A case of de novo duplication of 15q24-q26.3

  • Kim, Eun-Young;Kim, Yu-Kyong;Kim, Mi-Kyoung;Jung, Ji-Mi;Jeon, Ga-Won;Kim, Hye-Ran;Sin, Jong-Beom
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.6
    • /
    • pp.267-271
    • /
    • 2011
  • Distal duplication, or trisomy 15q, is an extremely rare chromosomal disorder characterized by prenatal and postnatal overgrowth, mental retardation, and craniofacial malformations. Additional abnormalities typically include an unusually short neck, malformations of the fingers and toes, scoliosis and skeletal malformations, genital abnormalities, particularly in affected males, and, in some cases, cardiac defects. The range and severity of symptoms and physical findings may vary from case to case, depending upon the length and location of the duplicated portion of chromosome 15q. Most reported cases of duplication of the long arm of chromosome 15 frequently have more than one segmental imbalance resulting from unbalanced translocations involving chromosome 15 and deletions in another chromosome, as well as other structural chromosomal abnormalities. We report a female newborn with a de novo duplication, 15q24- q26.3, showing intrauterine overgrowth, a narrow asymmetric face with down-slanting palpebral fissures, a large, prominent nose, and micrognathia, arachnodactyly, camptodactyly, congenital heart disease, hydronephrosis, and hydroureter. Chromosomal analysis showed a 46,XX,inv(9)(p12q13),dup(15)(q24q26.3). Array comparative genomic hybridization analysis revealed a gain of 42 clones on 15q24-q26.3. This case represents the only reported patient with a de novo 15q24-q26.3 duplication that did not result from an unbalanced translocation and did not have a concomitant monosomic component in Korea.

Ginsenoside Rg1 suppresses cancer cell proliferation through perturbing mitotic progression

  • Hong, Jihee;Gwon, Dasom;Jang, Chang-Young
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.481-488
    • /
    • 2022
  • Background: Although the tumor-suppressive effects of ginsenosides in cell cycle have been well established, their pharmacological properties in mitosis have not been clarified yet. The chromosomal instability resulting from dysregulated mitotic processes is usually increased in cancer. In this study, we aimed to investigate the anticancer effects of ginsenoside Rg1 on mitotic progression in cancer. Materials and methods: Cancer cells were treated with ginsenoside Rg1 and their morphology and intensity of different protein were analyzed using immunofluorescence microscopy. The level of proteins in chromosomes was compared through chromosomal fractionation and Western blot analyses. The location and intensity of proteins in the chromosome were confirmed through immunostaining of mitotic chromosome after spreading. The colony formation assays were conducted using various cancer cell lines. Results: Ginsenoside Rg1 reduced cancer cell proliferation in some cancers through inducing mitotic arrest. Mechanistically, it inhibits the phosphorylation of histone H3 Thr3 (H3T3ph) mediated by Haspin kinase and concomitant recruitment of chromosomal passenger complex (CPC) to the centromere. Depletion of Aurora B at the centromere led to abnormal centromere integrity and spindle dynamics, thereby causing mitotic defects, such as increase in the width of the metaphase plate and spindle instability, resulting in delayed mitotic progression and cancer cell proliferation. Conclusion: Ginsenoside Rg1 reduces the level of Aurora B at the centromere via perturbing Haspin kinase activity and concurrent H3T3ph. Therefore, ginsenoside Rg1 suppresses cancer cell proliferation through impeding mitotic processes, such as chromosome alignment and spindle dynamics, upon depletion of Aurora B from the centromere.

A Modified Mutation Detection Method for Large-scale Cloning of the Possible Single Nucleotide Polymorphism Sequences

  • Jiang, Ming-Chung;Jiang, Pao-Chu;Liao, Ching-Fong;Lee, Ching-Chiu
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.191-197
    • /
    • 2005
  • Although the human genome has been nearly completely sequenced, the functions and the roles of the vast majority of the genes, and the influences of single nucleotide polymorphisms (SNPs) in these genes are not entirely known. A modified mutation detection method was developed for large-scale cloning of the possible SNPs between tumor and normal cells for facilitating the identification of genetic factors that associated with cancer formation and progression. The method involves hybridization of restriction enzyme-cut chromosomal DNA, cleavage and modification of the sites of differences by enzymes, and differential cloning of sequence variations with a designed vector. Experimental validations of the presence and location of sequence variations in the isolated clones by PCR and DNA sequencing support the capability of this method in identifying sequence differences between tumor cells and normal cells.

A Phylogenetic Analysis for Hox Linked Gene Families of Vertebrates

  • Kim, Sun-Woo;Jung, Gi-La;Lee, Jae-Hyoun;Park, Ha-Young;Kim, Chang-Bae
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.261-267
    • /
    • 2008
  • The human chromosomes 2, 7, 12 and 17 show genomic homology around Hox gene clusters, is taken as evidence that these paralogous gene families might have arisen from a ancestral chromosomal segment through genome duplication events. We have examined protein data from vertebrate and invertebrate genomes to analyze the phylogenetic history of multi-gene families with three or more of their representatives linked to human Hox clusters. Topology comparison based upon statistical significance and information of chromosome location for these genes examined have revealed many of linked genes coduplicated with Hox gene clusters. Most linked genes to Hox clusters share the same evolutionary history and are duplicated in concert with each other. We conclude that gene families linked to Hox clusters may be suggestion of ancient genome duplications.