• Title/Summary/Keyword: Chromium Adsorption

Search Result 62, Processing Time 0.026 seconds

The Removal of Hexavalent Chromium from Aqueous Solutions Using Modified Holly Sawdust: Equilibrium and Kinetics Studies

  • Siboni, M. Shirzad;Samarghandi, M.R.;Azizian, S.;Kim, W.G.;Lee, S.M.
    • Environmental Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.55-60
    • /
    • 2011
  • The removal of hexavalent chromium from aqueous solutions onto modified holly sawdust was studied at varying initial hexavalent chromium concentrations, adsorbent doses, pHs and contact times. The removal of hexavalent chromium from aqueous solutions increased with increasing adsorbent dosage and contact time. The percentage of hexavalent chromium removed from the aqueous solutions decreased with increasing hexavalent chromium concentration and pH of the solution. The kinetics of the adsorption of hexavalent chromium onto modified holly sawdust was analyzed using pseudo first-order and pseudo second-order models. The pseudo second-order model described the kinetics of adsorption of hexavalent chromium. The Langmuir and Freundlich isotherm models were used for modeling of the adsorption equilibrium data. The Langmuir isotherm model well described the equilibrium data for the removal of hexavalent chromium by modified holly sawdust. The obtained maximum adsorption capacity was 18.86 mg/g at pH 7. The results showed that modified holly sawdust can be used as a low cost adsorbent for the treatment of aqueous solutions containing chromium.

Characterization of Chromium(VI) Adsorption onto Silk Fabrics (견직물에의 크롬(VI)의 흡착 특성)

  • 김규범;진영길
    • Journal of Sericultural and Entomological Science
    • /
    • v.38 no.1
    • /
    • pp.25-30
    • /
    • 1996
  • The adsorption mechanism of Chromium(VI) uptake in silk fibroin fibers was discussed. The adsorption equilbrium of Chromium(VI) is significantly influenced by the initial adsorption rate and it showed 52% of the equilibrium uptake. The Chromium(VI) uptake by silk fibroin in increased with the acidic range of pH, which react upon Chromium(VI) oxidations. The enthalpy change in the Chromium(VI) on the temperatures, $\Delta$H, was found to be 39.7 KJ.mol-1, It means that the Chromium(VI) adsorption proceeds via a certain complex chemical reaction and the Chromium complex was found to be coordinated with carbonyl group of amides from the result of infrared spectra. The chroming of silk fibroin fibers in moderated in the conditions of 5$0^{\circ}C$, pH 2.4, and 3 hours, which prevent from the loss of physical properties. The equilibrium adsorption is attained at 5 X 10-3M of Chromium(VI) solutions.

  • PDF

Adsorption isotherm and kinetics analysis of hexavalent chromium and mercury on mustard oil cake

  • Reddy, T. Vishnuvardhan;Chauhan, Sachin;Chakraborty, Saswati
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.95-107
    • /
    • 2017
  • Adsorption equilibrium and kinetic behavior of two toxic heavy metals hexavalent chromium [Cr(VI)] and mercury [Hg(II)] on mustard oil cake (MOC) was studied. Isotherm of total chromium was of concave type (S1 type) suggesting cooperative adsorption. Total chromium adsorption followed BET isotherm model. Isotherm of Hg(II) was of L3 type with monolayer followed by multilayer formation due to blockage of pores of MOC at lower concentration of Hg(II). Combined BET-Langmuir and BET-Freundlich models were appropriate to predict Hg(II) adsorption data on MOC. Boyd's model confirmed that external mass transfer was rate limiting step for both total chromium and Hg(II) adsorptions with average diffusivity of $1.09{\times}10^{-16}$ and $0.97m^2/sec$, respectively. Desorption was more than 60% with Hg(II), but poor with chromium. The optimum pH for adsorptions of total chromium and Hg(II) were 2-3 and 5, respectively. At strong acidic pH, Cr(VI) was adsorbed by ion exchange mechanism and after adsorption reduced to Cr(III) and remained on MOC surface. Hg(II) removal was achieved by complexation of $HgCl_2$ with deprotonated amine ($-NH_2$) and carboxyl (COO-) groups of MOC.

A simple and rapid approach to modeling chromium breakthrough in fixed bed adsorber

  • Chu, Khim Hoong
    • Advances in environmental research
    • /
    • v.7 no.1
    • /
    • pp.29-37
    • /
    • 2018
  • A simple mathematical model for predicting fixed bed adsorption dynamics is described. The model is characterized by a linear adsorption isotherm and a linear driving force expression for mass transfer. Its analytic solution can be approximated with an algebraic equation in closed form which is easily evaluated by spreadsheet computation. To demonstrate one application of the fixed bed model, a previously published adsorption system is used as a case study in this work. The adsorption system examined here describes chromium breakthrough in a fixed bed adsorber packed with imidazole functionalized adsorbent particles and is characterized by a nonlinear adsorption isotherm. However, the equilibrium behavior of the fixed bed adsorber is in essence governed by a linear adsorption isotherm due to the use of a low influent chromium concentration. It is shown that chromium breakthrough is predicted reasonably well by the fixed bed model. The model's parameters can be easily extracted from independent batch experiments. The proposed modeling approach is very simple and rapid, and only Excel is used for computation.

Removal of Chromium by Activated Carbon Fibers Plated with Copper Metal

  • Park, Soo-Jin;Jung, Woo-Young
    • Carbon letters
    • /
    • v.2 no.1
    • /
    • pp.15-21
    • /
    • 2001
  • In this work, activated carbon fibers (ACFs) were plated with copper metal using electroless plating method and the effects of surface properties and pore structures on chromium adsorption properties were investigated. Surface properties of ACFs have been characterized using pH and acid/base values. BET data with $N_2$ adsorption were used to obtain the structural parameters of ACFs. The electroless copper plating did significantly lead to a decrease in the surface acidity or to an increase in the surface basicity of ACFs. However, all of the samples possessed a well-developed micropore. The adsorption capacity of Cr(III) for the electroless Cu-plated ACFs was higher than that of the as-received, whereas the adsorption capacity of Cr(VI) for the former was lower than that of the latter. The adsorption rate constants ($K_1$, $K_2$, and $K_3$) were also evaluated from chromium adsorption isotherms. It was found that $K_1$ constant for Cr(III) adsorption depended largely on surface basicity. The increase of Cr(III) adsorption and the decrease of Cr(VI) adsorption were attributed to the formation of metal oxides on ACFs, resulting in increasing the surface basicity.

  • PDF

Chromium(III) recovery from tanning wastewater by adsorption on activated carbon and elution with sulfuric acid

  • Hintermeyer, Blanca H.;Tavani, Eduardo L.
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.149-156
    • /
    • 2017
  • Chromium(III) recovery from tanning wastewater by means of adsorption on activated carbon and elution with sulfuric acid was studied. Tests were carried out at laboratory scale on an effluent of industrial origin. Initially, proteinaceous materials and fats were separated via sieving followed by ultrafiltration. The chemical composition of the sample thus precleansed was (in g/L): 1.09 chromium(III); 10.36 sulfate; 11.10 sodium; 9.57 chloride; 0.40 proteinaceous materials; and 0.20 fats. Adsorptions were made at 20, 30, and $40^{\circ}C$, establishing what temperature favored chromium(III) uptake. At $40^{\circ}C$, the maximum cation fixation was 40.2 mg/g, and the lowest content in an equilibrium solution was 3.9 mg/L. As regards sodium, chloride, and sulfate, the concentrations before and after the treatment were similar. Likewise, it was found that protons were also retained, modifying the pH of the liquid medium. Adsorption isotherms were analyzed using the Langmuir, Temkin, and Freundlich models. Finally, the extraction of the adsorbed tanning agent with sulfuric acid was evaluated. A recovery of 96.5% was achieved with 0.9 N at $70^{\circ}C$ (13.23 g/L $Cr^{3+}$; 42.98 g/L sulfate; and 0.40 g/L NaCl).

Removal of hexavalent chromium Cr (VI) by adsorption in blended lateritic soil

  • Sunil, B.M.;Faziludeen, Saifiya
    • Advances in environmental research
    • /
    • v.4 no.3
    • /
    • pp.197-210
    • /
    • 2015
  • Hexavalent chromium [Cr (VI)] adsorption on lateritic soil and lateritic soil blended with black cotton (BC) soil, marine clay and bentonite clay were studied in the laboratory using batch adsorption techniques. In the present investigation the natural laterite soil was blended with 10%, 20% and 30% BC soil, marine clay and bentonite clay separately. The interactions on test soils have been studied with respect to the linear, Freundlich and Langmuir isotherms. The linear isotherm parameter, Freundlich and Langmuir isotherm parameters were determined from the batch adsorption tests. The adsorption of Cr (VI) on natural laterite soil and blended laterite soil was determined using double beam spectrophotometer. The distribution coefficients obtained were 1.251, 1.359 and 2.622 L/kg for lateritic soil blended with 10%, 20% and 30% BC soil; 5.396, 12.973 and 48.641 L/kg for lateritic soil blended with marine clay and 5.093, 8.148 and 12.179 L/kg for lateritic soil blended with bentonite clay respectively. The experimental data fitted well to the Langmuir model as observed from the higher value of correlation coefficient. Soil pH and iron content in soil(s) has greater influence on Cr (VI) adsorption. From the study it is concluded that laterite soil can be blended with clayey soils for removing Cr (VI) by adsorption.

Simultaneous Adsorption of Chromium (VI) and Phosphate by Calcined Mg-Al-CO3 Layered Double Hydroxides

  • Song, Xiulan;Wu, Yuhong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1817-1824
    • /
    • 2014
  • The adsorption characteristics of chromium (VI) and phosphate on calcined Mg-Al-$CO_3$ layered double hydroxides (CLDH) were investigated in single and binary systems. A series of batch experiments were performed to study the influence of various experimental parameters. In this study, CLDH exhibited a high adsorption capacity for Cr (VI) and P in a single system. The experimental data were close to the theoretical adsorption capacity given by the Langmuir isotherm, the calculating adsorption capacities of Cr (VI) and P were up to 70.42 mg/g and 97.09 mg/g, respectively. It was found that the initial pH was approximately 6 and it took 24 h to reach equilibrium when P and Cr (VI) were added simultaneously. The experimental data were best fitted by a pseudo-second-order kinetics model. Competitive adsorption between Cr (VI) and P existed in the binary system. The presence of Cr (VI) had no significant influence on P adsorption. However, the suppression of Cr (VI) adsorption was obvious when the initial concentration of P was up to 10 mg/L with a concentration of 0.5 g/L of CLDH.

Removal characteristics of chromium by activated carbon/CoFe2O4 magnetic composite and Phoenix dactylifera stone carbon

  • Foroutan, Rauf;Mohammadi, Reza;Ramavandi, Bahman;Bastanian, Maryam
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2207-2219
    • /
    • 2018
  • Activated carbon (AC) was synthesized from Phoenix dactylifera stones and then modified by $CoFe_2O_4$ magnetic nanocomposite for use as a Cr(VI) adsorbent. Both $AC/CoFe_2O_4$ composite and AC were fully characterized by FTIR, SEM, XRD, TEM, TGA, and VSM techniques. Based on the surface analyses, the addition of $CoFe_2O_4$ nanoparticles had a significant effect on the thermal stability and crystalline structure of AC. Factors affecting chromium removal efficiency like pH, dosage, contact time, temperature, and initial Cr(VI) concentration were investigated. The best pH was found 2 and 3 for Cr adsorption by AC and $AC/CoFe_2O_4$ composite, respectively. The presence of ion sulfate had a greater effect on the chromium sorption efficiency than nitrate and chlorine ions. The results illustrated that both adsorbents can be used up to seven times to adsorb chromium. The adsorption process was examined by three isothermal models, and Freundlich was chosen as the best one. The experimental data were well fitted by pseudo-second-order kinetic model. The half-life ($t_{1/2}$) of hexavalent chromium using AC and $AC/CoFe_2O_4$ magnetic composite was obtained as 5.18 min and 1.52 min, respectively. Cr(VI) adsorption by AC and $AC/CoFe_2O_4$ magnetic composite was spontaneous and exothermic. In general, our study showed that the composition of $CoFe_2O_4$ magnetic nanoparticles with AC can increase the adsorption capacity of AC from 36 mg/L to 70 mg/L.

Removal of hexavalent chromium using modified pistachio shell

  • Parlayici-Karatas, S.;Pehlivan, E.
    • Advances in environmental research
    • /
    • v.1 no.2
    • /
    • pp.167-179
    • /
    • 2012
  • Pistachio shell (Pistacia vera) (PS), a low-cost material, has been utilized for the removal of the Cr(VI) ions after treatment with citric acid. Batch experimental steps were applied to obtain Cr(VI) ion adsorption details for the equilibrium between Cr(VI) and modified pistachio shell (MPS). The influences of contact time, pH, adsorbent dose and initial chromium concentration on the adsorption performance of MPS was investigated in detail. The results displayed that adsorption of Cr(VI) by MPS reached to equilibrium after 2 h and after that a little change of Cr(VI) removal efficiency was observed. The sorption percent is higher at lower pH and lower chromium concentration. Two possible mechanisms for reduction of Cr(VI) to Cr(III) can be suggested in Cr(VI) removal. In the first mechanism, Cr(VI) is reduced to Cr(III) by surface electron-donor groups of the adsorbent and the reduced Cr(III) forms complexes with adsorbent or remains in the solution. This Cr(III) is not adsorbed by adsorbent at pH 1.8. But in second mechanism, the adsorption-coupled reduction of Cr(VI) to Cr(III) occurred on the adsorbent sites. The equilibrium sorption capacity of Cr(VI) ion after 2 h was 64.35 mg/g for MPS.