• Title/Summary/Keyword: Chondroitin sulfate

Search Result 110, Processing Time 0.035 seconds

Studies on In Vitro Fertilization and Development of Bovine Follicular Oocytes Matured in Vitro (체외성숙 우난포란의 체외수정과 발달에 관한 연구 IV. 난구세포의 생화학적 특성 검토)

  • 박세필;정형민;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 1992
  • These experiments were undertaken as a basic study to understand the role of cumulus cell on in vitro maturation and fertilization process with identifying the cumulus cell-secreted proteins. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE) and fast protein liquid chromatography(FPLC), the proteins of cumulus cells were identified. The results obtained in these experiments were summarized as follows ; 1. When the proteins secreted from cultured cell for 30 hours were separated by SDS-PAGE, there were a major band (>94,000) and other minor 2 bands with molecular weight ranging 30,000∼67,000 dalton. 2. In addition, the fractionations of these proteins by FPLC were idirectly shown that three bands were hyaluronic acid, chondroitin sulfate, and heparin.

  • PDF

ACIDIC GLYCOSAMINOGLYCANS IN BOVINE GINGIVA (한우치근의 산성뮤코다당에 관한 연구)

  • Chung, Tai-Young;Choi, Keun-Bae;Oh, Sae-Yoon
    • The Journal of the Korean dental association
    • /
    • v.15 no.12
    • /
    • pp.1031-1035
    • /
    • 1977
  • Acidic glycosaminoglycans were isolated from the bovine gingiva and analyzed by chemical methods and by two dimensional electrophoresis on cellulose acetate strip. The average total amount of acidic glycosaminoglycans-expressed as glucuronic acid-was 0.36% of dry gingival tissue. By using colorimetric analysis with two dimenional electrophoresis, the distribution of dermatan sulfate was calculated to be 33% of whole acidic glycosaminoglycans, chondroitin sulfate A to be 26% ad hyaluronic acid to be 38%, respectively.

  • PDF

The Preventive Inhibition of Chondroitin Sulfate Against the $CCl_4$-Induced Oxidative Stress of Subcellular Level

  • Lee, Jin-Young;Lee, Sang-Hun;Kim, Hee-Jin;Ha, Jong-Myung;Lee, Sang-Hyun;Lee, Jae-Hwa;Ha, Bae-Jin
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.340-345
    • /
    • 2004
  • Our work in this study was made in the microsomal fraction to evaluate the lipid peroxidation by measuring superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) and to elucidate the preventive role of CS in the $CCl_4$-induced oxidative stress. The excessive lipid peroxidation by free radicals derived from $CCl_4$ leads to the condition of oxidative stress which results in the accumulation of MDA. MDA is one of the end-products in the lipid peroxidation process and oxidative stress. MDA, lipid peroxide, produced in this oxidative stress causes various diseases related to aging and hepatotoxicity, etc. Normal cells have a number of enzymatic and nonenzymatic endogenous defense systems to protect themselves from reactive species. The enzymes in the defense systems, for example, are SOD, CAT, and GPx. They quickly eliminate reactive oxygen species (ROS) such as superoxide anion free radicalㆍO$^{[-10]}$ $_2$, hydrogen peroxide $H_2O$$_2$ and hydroxyl free radicalㆍOH. CS inhibited the accumulation of MDA and the deactivation of SOD, CAT and GPx in the dose-dependent and preventive manner. Our study suggests that CS might be a potential scavenger of free radicals in the oxidative stress originated from the lipid peroxidation of the liver cells of $CCl_4$-treated rats.

GM-CSF reduces expression of chondroitin sulfate proteoglycan (CSPG) core proteins in TGF-β-treated primary astrocytes

  • Choi, Jung-Kyoung;Park, Sang-Yoon;Kim, Kil Hwan;Park, So Ra;Lee, Seok-Geun;Choi, Byung Hyune
    • BMB Reports
    • /
    • v.47 no.12
    • /
    • pp.679-684
    • /
    • 2014
  • GM-CSF plays a role in the nervous system, particularly in cases of injury. A therapeutic effect of GM-CSF has been reported in rat models of various central nervous system injuries. We previously showed that GM-CSF could enhance long-term recovery in a rat spinal cord injury model, inhibiting glial scar formation and increasing the integrity of axonal structure. Here, we investigated molecular the mechanism(s) by which GM-CSF suppressed glial scar formation in an in vitro system using primary astrocytes treated with TGF-${\beta}$. GM-CSF repressed the expression of chondroitin sulfate proteoglycan (CSPG) core proteins in astrocytes treated with TGF-${\beta}$. GM-CSF also inhibited the TGF-${\beta}$-induced Rho-ROCK pathway, which is important in CSPG expression. Finally, the inhibitory effect of GM-CSF was blocked by a JAK inhibitor. These results may provide the basis for GM-CSF's effects in glial scar inhibition and ultimately for its therapeutic effect on neural cell injuries.

Functional Properties of Sulfated Polysaccharides in Ascidian(Halocynthia roretzs) Tunic (우렁쉥이 껍질 중 황산화다당의 기능적 특성)

  • LEE Kang-Ho;CHOI Byeong-Dae;HONG Byeong-Il;JUNG Byung-Chun;RUCK Ji-Hee;JUNG Woo-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.3
    • /
    • pp.447-451
    • /
    • 1998
  • Functional properties such as anti-blood coagulation, angiotensin converting enzyme (ACE) inhibitory activity, fat binding capacity, foaming properties, emulsifying properties and chemical components of sulfated polysaccharides isolated from ascidian tunics were investigated. The sulfated polysaccharide mainly consisted of sulfate, uronic acid, protein, and chondroitin sulfate, among which chondroitin sulfate showed higher concentration while sulfate and uronic acid did lower. Compositional menosaccharides were arabinose, xylose, glucose, galactose, glucuronic acid, N-acetylgalactosamine and N-acetyglucosamine. Especially, galactose content was dominant among them. And emulsifiability and foaminess of the sulfated polysaccharide was higher than the control group. Anti-blood coagulation of sulfated polysaccharide showed with respect to APTT (Activated partial thromboplastin time). ACE inhibitory activity showed about $16.7\%$.

  • PDF

Infectivity of Orientia tsutsugamushi to Various Eukaryotic Cells and Their Cellular Invasion Mechanism (Orientia tsutsugamushi의 유핵세포내 감염능 분석 및 기전)

  • Ihn, Kyung-Soo;Han, Seung-Hoon;Kim, Hang-Rae;Seong, Seung-Yong;Kim, Ik-Sang;Choi, Myung-Sik
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.5
    • /
    • pp.435-443
    • /
    • 1999
  • Orientia tsutsugamushi is obligate intracellular bacterium that grows within the cytoplasm of the eukaryotic host cells. Therefore capability of the attachment, entry into the host cell and intracellular survival should be critical process for oriential infection. In this study we investigated the cellular invasion mechanism of Orientia tsutsugamushi and the role of transmembrane heparan sulfate proteoglycan, which binds diverse components at the cellular microenvironment and is implicated as host cell receptors for a variety of microbial pathogens. First of all Orientia tsutsugamushi can invade a wide range of nonprofessional phagocytic cells including fibroblast, epithelial cells and endothelial cells of various host species, including Band T lymphocytes. Thus, it was postulated that the attachment of O. tsutsugamushi requires the recognition of ubiquitous surface structures of many kinds of host cells. Treatments with heparan sulfate and heparin inhibited the infection of Orientia tsutsugamushi in dose-dependent manner for L cell, mouse fibroblast, whereas other glycosaminoglycans such as chondroitin sulfate had no effect. Collectively, these findings provide strong evidence that initial interaction with heparan sulfate proteoglycan is required for the oriential invasion into host cells.

  • PDF

AN EXPERIMENTAL STUDY ON THE BONE INDUCTION CAPACITY OF THE PORCINE BONE MATRIX-DERIVED BONE MORPHOGENETIC PROTEIN (돼지의 골기질유도 골형성단백질의 골유도능에 관한 실험적 연구)

  • Park, Young-Wook;Lee, Jong-Ho;Kim, Soo-Kyeong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.19 no.3
    • /
    • pp.265-286
    • /
    • 1997
  • Bone morphogenetic proteins(BMPs) are a group of transforming growth factor beta(TGF-${\beta}$)-related factors and multifunctional proteins, especially the only known biologic factors capable of inducing endochondral bone formation at an extraskeletal site. This study was performed to investigate the effect of the partially purified porcine BMP(pBMP) at an ectopic site. PBMP was partially purified from porcine bone matrix and its activity was monitored by an in vivo bioassay. The purification method utilized extraction of the bone-inducing activity with 4M guanidine, followed by chromatography on heparin-Sepharose. Active fractions were assayed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. And the fractions were reconstituted with inactive insoluble collagenous bone matrix from rats, acid soluble type I collagen from rat tail and chondroitin-6-sulfate sodium salt and implanted into the pectroralis muscle pouches of Sprague-Dawley rats. And the carrier complex was implanted on the opposite side as control. The rats were sacrificed at the day of 1st, 3rd, 5th, 7th, 11th, 14th and 21st after implantation and examined histologically, radiologically and biochemically. And alkaline phosphatase activity and calcium content were used as indices of bone formation. The results were as follows ; 1. Active fractions were localized in a zone between 31 and 40 KDa on SDS-PAGE. 2. The implanted 3.0mg of the partially purified pBMP induced cartilage and bone in the muscle tissue of rats through an endochondral ossification process. 3. Inactive insoluble bone matrix, type I collagen and chondroitin-6-sulfate have functioned as carriers for pBMP, but revealed some foreign body reactions. 4. Soft X-ray didn't reveal significant change between the experimental and the control group. 5. The alkaline phosphatase activities in the experimental group of 5th, 7th, 11th, 14th and 21st were increased significantly compared with control (p<0.01) with the peak in the group of 11th day. 6. With time, the calcium content of the experimental group increased. And the calcium contents in the experimental group of 11th, 14th and 21st were increased significantly compared with control (p<0.01).

  • PDF

Extracellular matrixes and neuroinflammation

  • Jang, Dong Gil;Sim, Hyo Jung;Song, Eun Kyung;Kwon, Taejoon;Park, Tae Joo
    • BMB Reports
    • /
    • v.53 no.10
    • /
    • pp.491-499
    • /
    • 2020
  • The extracellular matrix is a critical component of every human tissue. ECM not only functions as a structural component but also regulates a variety of cellular processes such as cell migration, differentiation, proliferation, and cell death. In addition, current studies suggest that ECM is critical for the pathophysiology of various human diseases. ECM is composed of diverse components including several proteins and polysaccharide chains such as chondroitin sulfate, heparan sulfate, and hyaluronic acid. Each component of ECM exerts its own functions in cellular and pathophysiological processes. One of the interesting recent findings is that ECM is involved in inflammatory responses in various human tissues. In this review, we summarized the known functions of ECM in neuroinflammation after acute injury and chronic inflammatory diseases of the central nerve systems.

Decorin: a multifunctional proteoglycan involved in oocyte maturation and trophoblast migration

  • Park, Beom Seok;Lee, Jaewang;Jun, Jin Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.4
    • /
    • pp.303-310
    • /
    • 2021
  • Decorin (DCN) is a proteoglycan belonging to the small leucine-rich proteoglycan family. It is composed of a protein core containing leucine repeats with a glycosaminoglycan chain consisting of either chondroitin sulfate or dermatan sulfate. DCN is a structural component of connective tissues that can bind to type I collagen. It plays a role in the assembly of the extracellular matrix (ECM), and it is related to fibrillogenesis. It can interact with fibronectin, thrombospondin, complement component C1, transforming growth factor (TGF), and epidermal growth factor receptor. Normal DCN expression regulates a wide range of cellular processes, including proliferation, migration, apoptosis, and autophagy, through interactions with various molecules. However, its aberrant expression is associated with oocyte maturation, oocyte quality, and poor extravillous trophoblast invasion of the uterus, which underlies the occurrence of preeclampsia and intrauterine growth restriction. Spatiotemporal hormonal control of successful pregnancy should regulate the concentration and activity of specific proteins such as proteoglycan participating in the ECM remodeling of trophoblastic and uterine cells in fetal membranes and uterus. At the human feto-maternal interface, TGF-β and DCN play crucial roles in the regulation of trophoblast invasion of the uterus. This review summarizes the role of the proteoglycan DCN as an important and multifunctional molecule in the physiological regulation of oocyte maturation and trophoblast migration. This review also shows that recombinant DCN proteins might be useful for substantiating diverse functions in both animal and in vitro models of oogenesis and implantation.