Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.12.018

GM-CSF reduces expression of chondroitin sulfate proteoglycan (CSPG) core proteins in TGF-β-treated primary astrocytes  

Choi, Jung-Kyoung (Department of Physiology, Inha University College of Medicine)
Park, Sang-Yoon (Department of Science in Korean Medicine, Cancer Preventive Material Development Research Center, College of Korean Medicine, Kyung Hee University)
Kim, Kil Hwan (Department of Physiology, Inha University College of Medicine)
Park, So Ra (Department of Physiology, Inha University College of Medicine)
Lee, Seok-Geun (Department of Science in Korean Medicine, Cancer Preventive Material Development Research Center, College of Korean Medicine, Kyung Hee University)
Choi, Byung Hyune (Department of Advanced Biomedical Sciences, Inha University College of Medicine)
Publication Information
BMB Reports / v.47, no.12, 2014 , pp. 679-684 More about this Journal
Abstract
GM-CSF plays a role in the nervous system, particularly in cases of injury. A therapeutic effect of GM-CSF has been reported in rat models of various central nervous system injuries. We previously showed that GM-CSF could enhance long-term recovery in a rat spinal cord injury model, inhibiting glial scar formation and increasing the integrity of axonal structure. Here, we investigated molecular the mechanism(s) by which GM-CSF suppressed glial scar formation in an in vitro system using primary astrocytes treated with TGF-${\beta}$. GM-CSF repressed the expression of chondroitin sulfate proteoglycan (CSPG) core proteins in astrocytes treated with TGF-${\beta}$. GM-CSF also inhibited the TGF-${\beta}$-induced Rho-ROCK pathway, which is important in CSPG expression. Finally, the inhibitory effect of GM-CSF was blocked by a JAK inhibitor. These results may provide the basis for GM-CSF's effects in glial scar inhibition and ultimately for its therapeutic effect on neural cell injuries.
Keywords
CSPG core proteins; Glial scar; GM-CSF; Primary astrocytes; TGF-${\beta}$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Amar, A. P. and Levy, M. L. (1999) Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery 44, 1027-1039; discussion 1039-1040.   DOI   ScienceOn
2 Crowe, M. J., Bresnahan, J. C., Shuman, S. L., Masters, J. N. and Beattie, M. S. (1997) Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat. Med. 3, 73-76.   DOI   ScienceOn
3 Sandvig, A., Berry, M., Barrett, L. B., Butt, A. and Logan, A. (2004) Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia 46, 225-251.   DOI   ScienceOn
4 Jones, L. L., Margolis, R. U. and Tuszynski, M. H. (2003) The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp. Neurol. 182, 399-411.   DOI   ScienceOn
5 Silver, J. and Miller, J. H. (2004) Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5, 146-156.   DOI   ScienceOn
6 David, S. and Ousman, S. S. (2002) Recruiting the immune response to promote axon regeneration in the injured spinal cord. Neuroscientist 8, 33-41.   DOI   ScienceOn
7 Schermer, C. and Humpel, C. (2002) Granulocyte macrophage-colony stimulating factor activates microglia in rat cortex organotypic brain slices. Neurosci. Lett. 328, 180-184.   DOI   ScienceOn
8 Kim, J. K., Choi, B. H., Park, H. C., Park, S. R., Kim, Y. S., Yoon, S. H., Park, H. S., Kim, E. Y. and Ha, Y. (2004) Effects of GM-CSF on the neural progenitor cells. Neuroreport 15, 2161-2165.   DOI   ScienceOn
9 Kannan, Y., Moriyama, M., Sugano, T., Yamate, J., Kuwamura, M., Kagaya, A. and Kiso, Y. (2000) Neurotrophic action of interleukin 3 and granulocyte-macrophage colony-stimulating factor on murine sympathetic neurons. Neuroimmunomodulation 8, 132-141.   DOI   ScienceOn
10 Franzen, R., Bouhy, D. and Schoenen, J. (2004) Nervous system injury: focus on the inflammatory cytokine 'granulocyte-macrophage colony stimulating factor'. Neurosci. Lett. 361, 76-78.   DOI   ScienceOn
11 Saada, A., Reichert, F. and Rotshenker, S. (1996) Granulocyte macrophage colony stimulating factor produced in lesioned peripheral nerves induces the up-regulation of cell surface expression of MAC-2 by macrophages and Schwann cells. J. Cell Biol. 133, 159-167.   DOI
12 Ousman, S. S. and David, S. (2001) MIP-1alpha, MCP-1, GM-CSF, and TNF-alpha control the immune cell response that mediates rapid phagocytosis of myelin from the adult mouse spinal cord. J. Neurosci. 21, 4649-4656.
13 Bouhy, D., Malgrange, B., Multon, S., Poirrier, A. L., Scholtes, F., Schoenen, J. and Franzen, R. (2006) Delayed GM-CSF treatment stimulates axonal regeneration and functional recovery in paraplegic rats via an increased BDNF expression by endogenous macrophages. FASEB J. 20, 1239-1241.   DOI   ScienceOn
14 Huang, X., Choi, J. K., Park, S. R., Ha, Y., Park, H., Yoon, S. H., Park, H. C., Park, J. O. and Choi, B. H. (2007) GM-CSF inhibits apoptosis of neural cells via regulating the expression of apoptosis-related proteins. Neurosci. Res. 58, 50-57.   DOI   ScienceOn
15 Ha, Y., Kim, Y. S., Cho, J. M., Yoon, S. H., Park, S. R., Yoon, D. H., Kim, E. Y. and Park, H. C. (2005) Role of granulocyte-macrophage colony-stimulating factor in preventing apoptosis and improving functional outcome in experimental spinal cord contusion injury. J. Neurosurg. 2, 55-61.   DOI   ScienceOn
16 Park, H. C., Shim, Y. S., Ha, Y., Yoon, S. H., Park, S. R., Choi, B. H. and Park, H. S. (2005) Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Engineering 11, 913-922.   DOI   ScienceOn
17 Yoon, S. H., Shim, Y. S., Park, Y. H., Chung, J. K., Nam, J. H., Kim, M. O., Park, H. C., Park, S. R., Min, B. H., Kim, E. Y., Choi, B. H., Park, H. and Ha, Y. (2007) Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells 25, 2066-2073.   DOI   ScienceOn
18 Kim, N. K., Choi, B. H., Huang, X., Snyder, B. J., Bukhari, S., Kong, T. H., Park, H., Park, H. C., Park, S. R. and Ha, Y. (2009) Granulocyte-macrophage colony-stimulating factor promotes survival of dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced murine Parkinson's disease model. European J. Neurosci. 29, 891-900.   DOI   ScienceOn
19 Huang, X., Kim, J. M., Kong, T. H., Park, S. R., Ha, Y., Kim, M. H., Park, H., Yoon, S. H., Park, H. C., Park, J. O., Min, B. H. and Choi, B. H. (2009) GM-CSF inhibits glial scar formation and shows long-term protective effect after spinal cord injury. J. Neurol. Sci. 277, 87-97.   DOI   ScienceOn
20 Kong, T., Choi, J. K., Park, H., Choi, B. H., Snyder, B. J., Bukhari, S., Kim, N. K., Huang, X., Park, S. R., Park, H. C. and Ha, Y. (2009) Reduction in programmed cell death and improvement in functional outcome of transient focal cerebral ischemia after administration of granulocyte-macrophage colony-stimulating factor in rats. Laboratory investigation. J. Neurosurg. 111, 155-163.   DOI   ScienceOn
21 Smith, G. M. and Strunz, C. (2005) Growth factor and cytokine regulation of chondroitin sulfate proteoglycans by astrocytes. Glia 52, 209-218.   DOI   ScienceOn
22 Monnier, P. P., Sierra, A., Schwab, J. M., Henke-Fahle, S. and Mueller, B. K. (2003) The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Mol. Cell Neurosci. 22, 319-330.   DOI   ScienceOn
23 Zhang, Y. E. (2009) Non-Smad pathways in TGF-beta signaling. Cell Res. 19, 128-139.   DOI   ScienceOn
24 Guthridge, M. A., Stomski, F. C., Thomas, D., Woodcock, J. M., Bagley, C. J., Berndt, M. C. and Lopez, A. F. (1998) Mechanism of activation of the GM-CSF, IL-3, and IL-5 family of receptors. Stem Cells 16, 301-313.   DOI   ScienceOn
25 Choi, J. K., Choi, B. H., Ha, Y., Park, H., Yoon, S. H., Park, H. C. and Park, S. R. (2007) Signal transduction pathways of GM-CSF in neural cell lines. Neurosci. Lett. 420, 217-222.   DOI   ScienceOn
26 Logan, A., Berry, M., Gonzalez, A. M., Frautschy, S. A., Sporn, M. B. and Baird, A. (1994) Effects of transforming growth factor beta 1 on scar production in the injured central nervous system of the rat. Eur. J. Neurosci. 6, 355-363.   DOI
27 Iannotti, C., Zhang, Y. P., Shields, L. B., Han, Y., Burke, D. A., Xu, X. M. and Shields, C. B. (2006) Dural repair reduces connective tissue scar invasion and cystic cavity formation after acute spinal cord laceration injury in adult rats. J. Neurotrauma 23, 853-865.   DOI   ScienceOn
28 Roitbak, T. and Sykova, E. (1999) Diffusion barriers evoked in the rat cortex by reactive astrogliosis. Glia 28, 40-48.   DOI
29 Hynds, D. L. and Snow, D. M. (1999) Neurite outgrowth inhibition by chondroitin sulfate proteoglycan: stalling/ stopping exceeds turning in human neuroblastoma growth cones. Exp. Neurol. 160, 244-255.   DOI   ScienceOn
30 Schwab, J. M., Beschorner, R., Nguyen, T. D., Meyermann, R. and Schluesener, H. J. (2001) Differential cellular accumulation of connective tissue growth factor defines a subset of reactive astrocytes, invading fibroblasts, and endothelial cells following central nervous system injury in rats and humans. J. Neurotrauma 18, 377-388.   DOI   ScienceOn
31 Logan, A., Green, J., Hunter, A., Jackson, R. and Berry, M. (1999) Inhibition of glial scarring in the injured rat brain by a recombinant human monoclonal antibody to transforming growth factor-beta2. Eur. J. Neurosci. 11, 2367-2374.   DOI   ScienceOn
32 John, G. R., Chen, L., Rivieccio, M. A., Melendez-Vasquez, C. V., Hartley, A. and Brosnan, C. F. (2004) Interleukin-1beta induces a reactive astroglial phenotype via deactivation of the Rho GTPase-Rock axis. J. Neurosci. 24, 2837-2845.   DOI   ScienceOn
33 Lingor, P., Teusch, N., Schwarz, K., Mueller, R., Mack, H., Bahr, M. and Mueller, B. K. (2007) Inhibition of Rho kinase (ROCK) increases neurite outgrowth on chondroitin sulphate proteoglycan in vitro and axonal regeneration in the adult optic nerve in vivo. J. Neurochem. 103, 181-189.
34 Holmberg, E., Zhang, S. X., Sarmiere, P. D., Kluge, B. R., White, J. T. and Doolen, S. (2008) Statins decrease chondroitin sulfate proteoglycan expression and acute astrocyte activation in central nervous system injury. Exp. Neurol. 214, 78-86.   DOI   ScienceOn
35 Chan, C. C., Wong, A. K., Liu, J., Steeves, J. D. and Tetzlaff, W. (2007) ROCK inhibition with Y27632 activates astrocytes and increases their expression of neurite growth-inhibitory chondroitin sulfate proteoglycans. Glia 55, 369-384.   DOI   ScienceOn
36 Gopalakrishnan, S. M., Teusch, N., Imhof, C., Bakker, M. H., Schurdak, M., Burns, D. J. and Warrior, U. (2008) Role of Rho kinase pathway in chondroitin sulfate proteoglycan-mediated inhibition of neurite outgrowth in PC12 cells. J. Neurosci. Res. 86, 2214-2226.   DOI   ScienceOn
37 Jain, A., Brady-Kalnay, S. M. and Bellamkonda, R. V. (2004) Modulation of Rho GTPase activity alleviates chondroitin sulfate proteoglycan-dependent inhibition of neurite extension. J. Neurosci. Res. 77, 299-307.   DOI   ScienceOn
38 Just, I., Rohrbeck, A., Huelsenbeck, S. C. and Hoeltje, M. (2011) Therapeutic effects of Clostridium botulinum C3 exoenzyme. Naunyn. Schmiedebergs. Arch. Pharmacol. 383, 247-252.   DOI
39 Asher, R. A., Morgenstern, D. A., Fidler, P. S., Adcock, K. H., Oohira, A., Braistead, J. E., Levine, J. M., Margolis, R. U., Rogers, J. H. and Fawcett, J. W. (2000) Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J. Neurosci. 20, 2427-2438.