• Title/Summary/Keyword: Chondrocyte differentiation

Search Result 29, Processing Time 0.024 seconds

Activation of Nrf2 by sulfuretin stimulates chondrocyte differentiation and increases bone lengths in zebrafish

  • Seo-Hyuk Chang;Hoi-Khoanh Giong;Da-Young Kim;Suji Kim;Seungjun Oh;Ui Jeong Yun;Jeong-Soo Lee;Kye Won Park
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.496-501
    • /
    • 2023
  • Elongation of most bones occur at the growth plate through endochondral ossification in postnatal mammals. The maturation of chondrocyte is a crucial factor in longitudinal bone growth, which is regulated by a complex network of paracrine and endocrine signaling pathways. Here, we show that a phytochemical sulfuretin can stimulate hypertrophic chondrocyte differentiation in vitro and in vivo. We found that sulfuretin stabilized nuclear factor (erythroid-derived 2)-like 2 (Nrf2), stimulated its transcriptional activity, and induced expression of its target genes. Sulfuretin treatment resulted in an increase in body length of zebrafish larvae and induced the expression of chondrocyte markers. Consistently, a clinically available Nrf2 activator, dimethyl fumarate (DMF), induced the expression of hypertrophic chondrocyte markers and increased the body length of zebrafish. Importantly, we found that chondrocyte gene expression in cell culture and skeletal growth in zebrafish stimulated by sulfuretin were significantly abrogated by Nrf2 depletion, suggesting that such stimulatory effects of sulfuretin were dependent on Nrf2, at least in part. Taken together, these data show that sulfuretin has a potential use as supporting ingredients for enhancing bone growth.

Effect of Bee Venom Acupuncture on the Recovery of Chondrocyte Phenotype in Rabbit Cartilage (봉독약침이 연골세포 활성에 미치는 영향)

  • Zhao Mei-Ai;Lee Seung-Ki;Kim Gun-Ho;Choi Sun-Mi;Shim In-Sop;Kang Sung-Keel;Lee Hye-Jung;Hahm Dae-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.5
    • /
    • pp.1251-1255
    • /
    • 2005
  • Articular cartilage is an important factor for studying the arthritic diseases. The chondrocyte isolated from cartilage has the characieristic of differentiation and rf-differentiation when cultured in monolayer The bee venom (BV) acupuncture was investigated to examine their abilities on chondrocyte re-differentiation via rabbit chondrocyte primary culture. And the expression profiles of type II collagen (COL2) was analyzed using RT-PCR and western hybridization at third passage chondrocyte. In general, the mRNA expression of type II collagen was reduced step by step with the subculture of the chondrocyte. However, after the BV treatment for 48hr at third passage, the expressions of type II collagen were found to be significantly up-regulated, the same result was confirmed by western blotting. These results suggested that the diluted solution of BV for herb-acupuncture was very effective on the recovery of articular chondrocyte phenotype.

Paclitaxel Suppress Dedifferentiation via Mitogen-activated Protein Kinase Pathway in Rabbit Articular Chondrocyte

  • Im, Jeong-Hee;Kim, Song-Ja
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.67-72
    • /
    • 2009
  • Microtubule-interfering agents (MIAs), including paclitaxel, have been attributed in part to interference with microtubule assembly, impairment of mitosis, and changes in cytoskeleton. But the signaling mechanisms that link microtubule disarray to destructive or protective cellular responses are poorly understood. This study investigated the effect of paclitaxel on differentiation such as type II collagen expression and sulfated proteoglycan accumulation in rabbit articular chondrocytes. Paclitaxel caused differentiated chondrocyte phenotype as demonstrated by increment of type II collagen expression and proteoglycan synthesis Paclitaxel treatment stimulated activation of ERK-1/2 and p38 kinase. Inhibition of ERK-1/2 with PD98059 enhanced paclitaxel-induced differentiation, whereas inhibition of p38 kinase with SB203580 suppressed paclitaxel-induced differentiation. Our findings suggest that ERK-1/2 and p38 kinase oppositely regulate paclitaxel-induced differentiation in chondrocytes.

  • PDF

Extracts of Sorbus commixta and Geranium thunbergii inhibit Osteoclastogenesis and stimulate Chondrogenesis (마가목 및 현지초 추출물의 골손실 및 연골손상 억제효과)

  • Moon, Eun-Jung;Youn, You-Suk;Choi, Bo-Yun;Jeong, Hyun-Uk;Park, Ji-Ho;Oh, Myung-Sook;Soh, Yun-Jo;Kim, Sun-Yeou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3358-3365
    • /
    • 2010
  • This study was carried out to investigate the effect of Sorbus commixta (SC), Geranium thunbergii (GT) and their mixture (SC:GT=1:1, MIX) on inhibition of bone loss and chondral defect. To examine their activities, we measured the alkaline phosphatase (ALP) activity in human osteoblast-like MG-63 cells and performed tartrate-resistant acid phosphate (TRAP) staining in osteoclast differentiated from Raw264.7 cells. To investigate the influence on chondrocyte differentiation, we performed alcian-blue staining in chondrocyte differentiated from ATDC5 cells. All of SC, GT and MIX did not increase ALP activity in MG-63 cells. However, SC and mixture (SC:GT=1:1, MIX) significantly inhibited osteoclastic differentiation. And they also induced chondrocyte differentiation. These results suggest that SC and GT may have a potential for the treatment of bone loss and chondral defect by suppression of osteoclast differentiation and stimulation of chondrocyte differentiation. Therefore, clarification of their mechanisms and active components will be needed.

Effect of Yukmijihwang-Tang Gamibang Aqua-acupuncture on the Recovery of Chondrocyte Phenotype (육미지황탕가미방(六味地黃湯加味方) 약침이 연골세포에 미치는 영향)

  • Choi, Won-Joo;Min, Sang Yeon;Kim, Jang Hyun
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.117-125
    • /
    • 2010
  • Objectives The purpose of this study is to examine the effect of chondrocyte re-differentiation in using ukmijihwang-Tang gamibang aqua-acupuncture. Methods In this study, chondrocytes were extracted from New Zealand white rabbit's knee joint, and cultured in monolayer after collagenase treatment. In the third passage, after the mRNA transcript of the type II collagen significantly reduced, diluted Yukmijihwang-Tang gamibang were added to cultured of chondrocyte, and its effect on the mRNA expression of type II collagen was quantitatively evaluated. Results As a result of treatment with Yukmijihwang-Tang gamibang in vitro for 48 hours, the mRNA expression of type II collagen was up-regulated. In addition, the result of H&E-staining in vivo indicated that chondrocyte-like tissues were formed in repairing injured cartilages after 12 weeks of treatment with Yukmijihwang-Tang gamibang. Conclusions These results indicated that Yukmijihwang-Tang gamibang was effective on the recovery of chondrocyte phenotype, and could be used for cartilage regeneration in arthritic diseases. However, more clinical study of Oriental medical treatment for this case might be also needed.

Influence of $1{\alpha}$, 25-dihydroxyvitamin $D_3$ [1, $25(OH)_2D_3$] on the expression of Sox 9 and the transient receptor potential vanilloid 5/6 ion channels in equine articular chondrocytes

  • Hdud, Ismail M.;Loughna, Paul T.
    • Journal of Animal Science and Technology
    • /
    • v.56 no.8
    • /
    • pp.33.1-33.8
    • /
    • 2014
  • Background: Sox 9 is a major marker of chondrocyte differentiation. When chondrocytes are cultured in vitro they progressively de-differentiate and this is associated with a decline in Sox 9 expression. The active form of vitamin D, 1, 25 $(OH)_2D_3$ has been shown to be protective of cartilage in both humans and animals. In this study equine articular chondrocytes were grown in culture and the effects of 1, 25 $(OH)_2D_3$ upon Sox 9 expression examined. The expression of the transient receptor potential vanilloid (TRPV) ion channels 5 and 6 in equine chondrocytes in vitro, we have previously shown, is inversely correlated with de-differentiation. The expression of these channels in response to 1, 25 $(OH)_2D_3$ administration was therefore also examined. Results: The active form of vitamin D (1, 25 $(OH)_2D_3$ when administered to cultured equine chondrocytes at two different concentrations significantly increased the expression of Sox 9 at both. In contrast 1, 25 $(OH)_2D_3$ had no significant effect upon the expression of either TRPV 5 or 6 at either the protein or the mRNA level. Conclusions: The increased expression of Sox 9, in equine articular chondrocytes in vitro, in response to the active form of vitamin D suggests that this compound could be utilized to inhibit the progressive de-differentiation that is normally observed in these cells. It is also supportive of previous studies indicating that $1{\alpha}$, 25-dihydroxyvitamin $D_3$ can have a protective effect upon cartilage in animals in vivo. The previously observed correlation between the degree of differentiation and the expression levels of TRPV 5/6 had suggested that these ion channels may have a direct involvement in, or be modulated by, the differentiation process in vitro. The data in the present study do not support this.

Latent Transforming Growth Factor-beta1 Functionalised Electrospun Scaffolds Promote Human Cartilage Differentiation: Towards an Engineered Cartilage Construct

  • Lim, Erh-Hsuin;Sardinha, Jose Paulo;Myers, Simon;Stevens, Molly
    • Archives of Plastic Surgery
    • /
    • v.40 no.6
    • /
    • pp.676-686
    • /
    • 2013
  • Background To overcome the potential drawbacks of a short half-life and dose-related adverse effects of using active transforming growth factor-beta 1 for cartilage engineering, a cell-mediated latent growth factor activation strategy was developed incorporating latent transforming growth factor-${\beta}$1 (LTGF) into an electrospun poly(L-lactide) scaffold. Methods The electrospun scaffold was surface modified with NH3 plasma and biofunctionalised with LTGF to produce both random and orientated biofunctionalised electrospun scaffolds. Scaffold surface chemical analysis and growth factor bioavailability assays were performed. In vitro biocompatibility and human nasal chondrocyte gene expression with these biofunctionalised electrospun scaffold templates were assessed. In vivo chondrogenic activity and chondrocyte gene expression were evaluated in athymic rats. Results Chemical analysis demonstrated that LTGF anchored to the scaffolds was available for enzymatic, chemical and cell activation. The biofunctionalised scaffolds were non-toxic. Gene expression suggested chondrocyte re-differentiation after 14 days in culture. By 6 weeks, the implanted biofunctionalised scaffolds had induced highly passaged chondrocytes to re-express Col2A1 and produce type II collagen. Conclusions We have demonstrated a proof of concept for cell-mediated activation of anchored growth factors using a novel biofunctionalised scaffold in cartilage engineering. This presents a platform for development of protein delivery systems and for tissue engineering.

Molecular Mechanism of Runx2-Dependent Bone Development

  • Komori, Toshihisa
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.168-175
    • /
    • 2020
  • Runx2 is an essential transcription factor for skeletal development. It is expressed in multipotent mesenchymal cells, osteoblast-lineage cells, and chondrocytes. Runx2 plays a major role in chondrocyte maturation, and Runx3 is partly involved. Runx2 regulates chondrocyte proliferation by directly regulating Ihh expression. It also determines whether chondrocytes become those that form transient cartilage or permanent cartilage, and functions in the pathogenesis of osteoarthritis. Runx2 is essential for osteoblast differentiation and is required for the proliferation of osteoprogenitors. Ihh is required for Runx2 expression in osteoprogenitors, and hedgehog signaling and Runx2 induce the differentiation of osteoprogenitors to preosteoblasts in endochondral bone. Runx2 induces Sp7 expression, and Runx2, Sp7, and canonical Wnt signaling are required for the differentiation of preosteoblasts to immature osteoblasts. It also induces the proliferation of osteoprogenitors by directly regulating the expression of Fgfr2 and Fgfr3. Furthermore, Runx2 induces the proliferation of mesenchymal cells and their commitment into osteoblast-lineage cells through the induction of hedgehog (Gli1, Ptch1, Ihh), Fgf (Fgfr2, Fgfr3), Wnt (Tcf7, Wnt10b), and Pthlh (Pth1r) signaling pathway gene expression in calvaria, and more than a half-dosage of Runx2 is required for their expression. This is a major cause of cleidocranial dysplasia, which is caused by heterozygous mutation of RUNX2. Cbfb, which is a co-transcription factor that forms a heterodimer with Runx2, enhances DNA binding of Runx2 and stabilizes Runx2 protein by inhibiting its ubiquitination. Thus, Runx2/Cbfb regulates the proliferation and differentiation of chondrocytes and osteoblast-lineage cells by activating multiple signaling pathways and via their reciprocal regulation.

FUNCTION OF RUNX2 AND OSTERIX IN OSTEOGENESIS AND TEETH (치아와 골형성에서의 Runx2와 Osterix의 기능)

  • Kim, Jung-Eun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.4
    • /
    • pp.381-385
    • /
    • 2007
  • Bone is a dynamic organ that bone remodeling occurs throughout life and involves the process in which the bone matrix is broken down through resorption by osteoclasts and then built back again through bone formation by osteoblasts. Usually these two processes balance each other and a stable level of bone mass is maintained. We here discuss transcription factors involved in regulating the osteoblast differentiation pathway. Runx2 is a transcription factor which is essential in skeletal development by regulating osteoblast differentiation and chondrocyte maturation. Its companion subunit, Cbf${\beta}$ is needed for an early step in osteoblast differentiation pathway. Whereas Osterix(Osx) is a new identified osteoblast-specific transcription factor which is required for the differentiation of preosteoblasts into more mature and functional osteoblasts. We also discuss other transcription factors, Msx1 and 2, Dlx5 and 6, Twist, and Sp3 that affect skeletal patterning and development. Understanding the characteristics of mice in which these transcription factors are inactivated should help define their role in bone physiology and pathology of bone defects.

Wedelolactone Promotes the Chondrogenic Differentiation of Mesenchymal Stem Cells by Suppressing EZH2

  • Wei Qin;Lin Yang;Xiaotong Chen;Shanyu Ye;Aijun Liu;Dongfeng Chen;Kunhua Hu
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.326-341
    • /
    • 2023
  • Background and Objectives: Osteoarthritis (OA) is a degenerative disease that leads to the progressive destruction of articular cartilage. Current clinical therapeutic strategies are moderately effective at relieving OA-associated pain but cannot induce chondrocyte differentiation or achieve cartilage regeneration. We investigated the ability of wedelolactone, a biologically active natural product that occurs in Eclipta alba (false daisy), to promote chondrogenic differentiation. Methods and Results: Real-time reverse transcription-polymerase chain reaction, immunohistochemical staining, and immunofluorescence staining assays were used to evaluate the effects of wedelolactone on the chondrogenic differentiation of mesenchymal stem cells (MSCs). RNA sequencing, microRNA (miRNA) sequencing, and isobaric tags for relative and absolute quantitation analyses were performed to explore the mechanism by which wedelolactone promotes the chondrogenic differentiation of MSCs. We found that wedelolactone facilitates the chondrogenic differentiation of human induced pluripotent stem cell-derived MSCs and rat bone-marrow MSCs. Moreover, the forkhead box O (FOXO) signaling pathway was upregulated by wedelolactone during chondrogenic differentiation, and a FOXO1 inhibitor attenuated the effect of wedelolactone on chondrocyte differentiation. We determined that wedelolactone reduces enhancer of zeste homolog 2 (EZH2)-mediated histone H3 lysine 27 trimethylation of the promoter region of FOXO1 to upregulate its transcription. Additionally, we found that wedelolactone represses miR-1271-5p expression, and that miR-1271-5p post-transcriptionally suppresses the expression of FOXO1 that is dependent on the binding of miR-1271-5p to the FOXO1 3'-untranscribed region. Conclusions: These results indicate that wedelolactone suppresses the activity of EZH2 to facilitate the chondrogenic differentiation of MSCs by activating the FOXO1 signaling pathway. Wedelolactone may therefore improve cartilage regeneration in diseases characterized by inflammatory tissue destruction, such as OA.