• Title/Summary/Keyword: Chlorosulfonic

Search Result 36, Processing Time 0.02 seconds

Preparation of Heparinoids from Acidic Plant Polysaccharides (식물성 산성당으로부터 헤파리노이드의 제조)

  • Kim, Yeong-Shik;Roh, Ji-Eun;Ann, Hyung-Soo;Park, Ho-Koon
    • YAKHAK HOEJI
    • /
    • v.36 no.4
    • /
    • pp.350-356
    • /
    • 1992
  • Anticoagulant activities were tested for the fifteen kinds of medicinal plants by measuring activated partial thromboplastin time (aPTT). Of them five kinds or species (Artemisia princeps, Sanguisorba officinalis, Artemisia apiacea, Eclipa alba, Schizonepeta tenuifolia) were selected and fractionated for the preparation of acidic polysaccharides. They were extracted with water by refluxing and the extracts were precipitated with ethanol. The precipitates were separated based on charge using a DEAE-Sephadex. The low salt and high salt fractions were sulfated with anhydrous pyridine and chlorosulfonic acid complex. In vitro anticoagulant activities of sulfated polysaccharides were tested by measuring aPTT, prothrombin time (PT), and factor Xa clotting time using normal human plasma. No relationship was found between the amount of uronic acids and anticoagulant activities, but the sulfated ones show the increase of activities. In vivo anticoagulant properties of the sulfated polysaccharide from Artemisia apiacea were also tested by the intraveneous administration of three different doses (3,5 and 10 mg/kg) to rats. APTT and PT were increased significantly and the action of factor Xa and thrombin mediated through antithrombin III were inhibited slightly.

  • PDF

Mercury recovery from aqueous solutions by polymer-enhanced ultrafiltration using a sulfate derivative of chitosan

  • Carreon, Jose;Saucedo, Imelda;Navarro, Ricardo;Maldonado, Maria;Guerra, Ricardo;Guibal, Eric
    • Membrane and Water Treatment
    • /
    • v.1 no.4
    • /
    • pp.231-251
    • /
    • 2010
  • The sulfatation of chitosan, by reaction with chlorosulfonic acid under controlled conditions, allowed increasing the pH range of chitosan solubility. The biopolymer was characterized using FTIR and $^{13}C$-NMR spectroscopy, elemental analysis and titration analysis and it was tested for mercury recovery by polymer enhanced ultrafiltration (PEUF). In slightly alkaline conditions (i.e., pH 8) mercury recovery was possible and at saturation of the polymer the molar ratio $-NH_2$/Hg(II) tended to 2.6. Polymer recycling was possible changing the pH to 2 and the polymer was reused for 3 cycles maintaining high metal recovery. The presence of chloride ions influences metal speciation and affinity for the polymer and "playing" with metal speciation allowed using the PEUF process for mercury separation from cadmium; at pH 11 the formation of hydroxo-complexes of Hg(II) limits it retention. Cake formation reveals the predominant controlling step for permeation flux.

Selective acetate detection using functional carbon nanotube fiber

  • Choi Seung-Ho;Lee, Joon-Seok;Choi, Won-Jun;Lee, Sungju;Jeong, Hyeon Su;Choi, Seon-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.357-363
    • /
    • 2021
  • We developed a chemiresistive anion sensor using highly conductive carbon nanotube fibers (CNTFs) functionalized with anion receptors. Mechanically robust CNTFs were prepared via wet-spinning utilizing the nematic liquid crystal properties of CNTs in chlorosulfonic acid (CSA). For anion detection, polymeric receptors composed of dual-hydrogen bond donors, including thiourea 1, squaramide 2, and croconamide 3, were prepared and bonded non-covalently on the surface of the CNTFs. The binding affinities of the anion receptors were studied using UV-vis titrations. The results revealed that squaramide 2 exhibited the highest binding affinity toward AcO-, followed by thiourea 1 and croconamide 3. This trend was consistent with the chemiresistive sensing responses toward AcO- using functional CNTFs. Selective anion sensing properties were observed that CNTFs functionalized with squaramide 2 exhibited a response of 1.08% toward 33.33 mM AcO-, while negligible responses (<0.1%) were observed for other anions such as Cl-, Br-, and NO3-. The improved response was attributed to the internal charge transfer of dual-hydrogen bond donors owing to the deprotonation of the receptor upon the addition of AcO-.

Preparation and Characterization of ion Exchange Membrane for Direct Methanol Fuel Cell(DMFC) Using Sulfonated Polysulfone (설폰화 폴리설폰을 이용한 직접메탄올연료전지용 이온교환막의 제조 및 특성 연구)

  • 신현수;이충섭;전지현;정선영;임지원;남상용
    • Membrane Journal
    • /
    • v.12 no.4
    • /
    • pp.247-254
    • /
    • 2002
  • In order to develop the ion exchange membranes which would be used in direct methanol fuel cell (DMFC), the polysulfone polymer was sulfonated using chlorosulfonic acid (CSA) and trimethylchlorosilane(TMCS). It has been characterized in terms of ion conductivities, methanol crossover, swelling degree and ion exchange capacities for the heat untreated and treated membranes at $150^{\circ}C.$ Typically, the methanol permeability and ion conductivity at the mole ratio of 1.4 between polysulfone repeating unit and sulfonating agents showed $2.87{\times}10^{-7}\; cm^2/s$(without heat treatment), $1.52{\times}10^{-7}\; cm^2/s$(with heat treatment) and $1.10{\times}10^{-2}\; S/cm$(without heat treatment), $0.87{\times}10^{-2}\;$ S/cm(with heat treatment), respectively. After the mole ration of 1.4 both values indicated mild increase.

Multi-functional Finish of Polypropylene Nonwoven by Photo-induced Graft Polymerization (II) - Grafting of Styrene and Its Ammonia Adsorption Behavior - (광그라프팅에 의한 폴리프로필렌 부직포의 복합기능화 가공(II) -스티렌의 그라프트 반응 및 암모니아 흡착거동 -)

  • 김상률;최창남
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.642-648
    • /
    • 2001
  • An attempt was made to synthesize an ammonia adsorbent by the photo-induced grafting of styrene (St) onto polypropylene (PP) nonwoven using benzoin ethyl ether (BEE) as a photosensitizer with urea and trimethylol propane triacrylate in methanol medium. As styrene concentration was increased, the graft yield was increased. It was also found that the graft yield increased with reaction time. The polypropylene grafted with styrene (PP-g-St) was sulfonated by chlorosulfonic acid in dichloroethane and complexed with several metal ion, such as $cO^{+2}$, $nI^{+2}$, $cU^{+2}$, $Zn^{+2}$. The amount of ammonia gas adsorbed by these sample was dependent on the degree of sulfonation, adsorption time, and ammonia gas pressure. The adsorption capacity of ammonia gas by the sulfonated PP-g-St(SPP-g-St) nonwoven with 4. 25 mmol $H^+$/g was 6.61 mmol/g. Metal ion complexed SPP-g-St nonwovens had higher adsorption capacity than SPP-g-St nonwoven and the $Co^{+2}$ complexed SPP-g-St showed 9.90 mmol $NH_3$/g, which was much higher than that of active carbon or silica gel.

  • PDF

Chemical Modification of Botryosphaeran: Structural Characterization and Anticoagulant Activity of a Water-Soluble Sulfonated ($1{\rightarrow}3$)($1{\rightarrow}6$)-${\beta}$-D-Glucan

  • Brandi, Jamile;Oliveira, Eder C.;Monteiro, Nilson K.;Vasconcelos, Ana Flora D.;Dekker, Robert F.H.;Barbosa, Aneli M.;Silveira, Joana L.M.;Mourao, Paulo A.S.;Silva, Maria De Lourdes Corradi Da
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.10
    • /
    • pp.1036-1042
    • /
    • 2011
  • The exopolysaccharide botryosphaeran ($EPS_{GLC}$; a ($1{\rightarrow}3$)($1{\rightarrow}6$)-${\beta}$-D-glucan from Botryosphaeria rhodina MAMB-05) was sulfonated to produce a water-soluble fraction ($EPS_{GLC}$-S) using pyridine and chlorosulfonic acid in formamid. This procedure was then repeated twice to produce another fraction ($EPS_{GLC}$-RS) with a higher degree of substitution (DS, 1.64). The purity of each botryosphaeran sample (unsulfonated and sulfonated) was assessed by gel filtration chromatography (Sepharose CL-4B), where each polysaccharide was eluted as a single symmetrical peak. The structures of the sulfonated and re-sulfonated botryosphaerans were investigated using ultraviolet-visible (UV-Vis), Fourier-transform infrared (FT-IR), and $^{13}C$ nuclear magnetic resonance ($^{13}C$ NMR) spectroscopies. $EPS_{GLC}$ and $EPS_{GLC}$-RS were also assayed for anticoagulation activity, and $EPS_{GLC}$-RS was identified as an anticoagulant.