• 제목/요약/키워드: Chloroplast genome

검색결과 124건 처리시간 0.022초

The complete chloroplast genome of Zoysia macrostachya (Poaceae): Insights into intraspecific variations and species delimitation of the Zoysia species

  • OH, Sung-Dug;LEE, Seong-Kon;YUN, Doh-Won;SUN, Hyeon-Jin;KANG, Hong-Gyu;LEE, Hyo-Yeon;XI, Hong;PARK, Jongsun;LEE, Bumkyu
    • 식물분류학회지
    • /
    • 제51권3호
    • /
    • pp.326-331
    • /
    • 2021
  • The complete chloroplast genome of Zoysia macrostachya Franch. & Sav. isolated in Korea is 135,902 bp long (GC ratio is 38.4%) and has four subregions; 81,546 bp of large single-copy (36.3%) and 12,586 bp of small single-copy (32.7%) regions are separated by 20,885 bp of inverted repeat (44.1%) regions, including 130 genes (83 protein-coding genes, eight rRNAs, and 39 tRNAs). Thirty-nine single nucleotide polymorphisms and 11 insertions and deletion (INDEL) regions were identified from two Z. macrostachya chloroplast genomes, the smallest among other Zoysia species. Phylogenetic trees show that two Z. macrostachya chloroplast genomes are clustered into a single clade. However, we found some incongruency with regard to the phylogenetic position of the Z. macrostachya clade. Our chloroplast genome provides insights into intraspecific variations and species delimitation issues pertaining to the Zoysia species.

Development of PCR-based markers for discriminating Solanum berthaultii using its complete chloroplast genome sequence

  • Kim, Soojung;Cho, Kwang-Soo;Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • 제45권3호
    • /
    • pp.207-216
    • /
    • 2018
  • Solanum berthaultii is one of the wild diploid Solanum species, which is an excellent resource in potato breeding owing to its resistance to several important pathogens. On the other hand, sexual hybridization between S. berthaultii and S. tuberosum (potato) is limited because of their sexual incompatibility. Therefore, cell fusion can be used to introgress various novel traits from this wild species into the cultivated potatoes. After cell fusion, it is crucial to identify fusion products with the aid of molecular markers. In this study, the chloroplast genome sequence of S. berthaultii obtained by next-generation sequencing technology was described and compared with those of five other Solanum species to develop S. berthaultii specific markers. A total sequence length of the chloroplast genome is 155,533 bp. The structural organization of the chloroplast genome is similar to those of the five other Solanum species. Phylogenic analysis with 25 other Solanaceae species revealed that S. berthaultii is most closely located with S. tuberosum. Additional comparison of the chloroplast genome sequence with those of the five Solanum species revealed 25 SNPs specific to S. berthaultii. Based on these SNPs, six PCR-based markers for differentiating S. berthaultii from other Solanum species were developed. These markers will facilitate the selection of fusion products and accelerate potato breeding using S. berthaultii.

Chloroplast genome of the conserved Aster altaicus var. uchiyamae B2015-0044 as genetic barcode

  • Lee, Minjee;Yi, Jae-Sun;Park, Jihye;Lee, Jungho
    • Journal of Species Research
    • /
    • 제10권2호
    • /
    • pp.154-158
    • /
    • 2021
  • An endemic endangered species, Aster altaicus var. uchiyamae (Danyang aster) B2015-0044, is cultivated at the Shingu Botanical Garden, which serves as the ex situ conservation institution for this species. In this work, we sequenced the chloroplast genome of A. altaicus var. uchiyamae B2015-0044. We found that the chloroplast (cp) genome of B2015-0044 was 152,457 base pairs(bps) in size: 84,247 bps of large single copy regions(LSC), 25,007 bps of inverted repeats(IRs), and 18,196 bps of small single copy regions. The B2015-0044 cp genome contains 79 protein-coding genes (PCGs), 4 RNA genes, 29 tRNA genes, and 3 pseudogenes. These results were identical to a previously reported cp genome (Park et al., 2017), except for two sites in introns and three in intergenic spacer (IGS) regions. For the intronic differences, we found that clpP.i1 had a 1-bp small simple repeat (SSR) (T) and petD.i had a 3-bp SSR (ATT). We found 1-bp SSRs in the IGSs of trnT_ggu~psbD and psbZ~trnG_gcc, C and A, respectively. The IGS of(ndhF)~rpl32 had a SNP. Based on our results, the cp genome of the A. altaicus var. uchiyamae can be classified into two genotypes, [C]1-[A]12-[T]12-[ATT]4-C and [C]2-[A]11-[T]11-[ATT]2-A.

Complete Chloroplast Genome Sequence of Korean Endermic Species, Pseudostellaria longipedicellata

  • Kim, Yongsung;Heo, Kyeong-In;Lee, Sangtae;Park, Jongsun
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 춘계학술발표회
    • /
    • pp.40-40
    • /
    • 2018
  • Pseudostellaria Pax (Caryophyllaceae) is a small genus distributed in temperate region. It consists of 25 species presenting high diversity in Asia. Pseudostellaria longipedicellata S. Lee, K. Heo & S. C. Kim was first announced as new species in 2012. Morphological characters of P. longipedicellata are closely related to those of Psedusotellaria palibiniana and Psedusotellaria okmotoi. These are distinguished from P. longipedicellata by shorter pedicel and puberulent pedicels, respectively and by being distributed allopatically between P. longipedicellata and rest of species. The complete chloroplast genome of P. longipedicellata was successfully rescued from raw reads generated by HiSeq2000. Its total length is 149,626 bp consisting of four regions: large single copy (LSC) region (81,292 bp), small single copy (SSC) region (16,984bp), and inverted repeats (IRs; 25,765 bp per each). It contained 126 genes (81 coding DNA sequence (CDS), eight rRNAs, and 37 tRNAs); 18 genes (seven CDS, four rRNAs, and seven tRNAs) are duplicated in inverted repeat regions. The overall GC content of P. longipedicellata is 36.5% and in the LSC, SSC, and IR regions were 34.3%, 29.3%, and 42.4%, respectively. Based on phylogenetic analysis of chloroplast genomes of P. longipedicellata and relatives species presents clear phylogenetic positions of Pseudostellaria genus. This chloroplast genome will be an important sequence resources for further researches of Pseudostellaria genus.

  • PDF

The Crucial Role of Chloroplast-Related Proteins in Viral Genome Replication and Host Defense against Positive-Sense Single-Stranded RNA Viruses

  • John, Bwalya;Kook-Hyung, Kim
    • The Plant Pathology Journal
    • /
    • 제39권1호
    • /
    • pp.28-38
    • /
    • 2023
  • Plant viruses are responsible for worldwide production losses of numerous economically important crops. The most common plant RNA viruses are positivesense single-stranded RNA viruses [(+)ss RNA viruses]. These viruses have small genomes that encode a limited number of proteins. The viruses depend on their host's machinery for the replication of their RNA genome, assembly, movement, and attraction to the vectors for dispersal. Recently researchers have reported that chloroplast proteins are crucial for replicating (+)ss plant RNA viruses. Some chloroplast proteins, including translation initiation factor [eIF(iso)4E] and 75 DEAD-box RNA helicase RH8, help viruses fulfill their infection cycle in plants. In contrast, other chloroplast proteins such as PAP2.1, PSaC, and ATPsyn-α play active roles in plant defense against viruses. This is also consistent with the idea that reactive oxygen species, salicylic acid, jasmonic acid, and abscisic acid are produced in chloroplast. However, knowledge of molecular mechanisms and functions underlying these chloroplast host factors during the virus infection is still scarce and remains largely unknown. Our review briefly summarizes the latest knowledge regarding the possible role of chloroplast in plant virus replication, emphasizing chloroplast-related proteins. We have highlighted current advances regarding chloroplast-related proteins' role in replicating plant (+)ss RNA viruses.

A report of the second chloroplast genome sequence in Veronica nakaiana (Plantaginaceae), an endemic species in Korea

  • LEE, Yae-Eun;LEE, Yoonkyung;KIM, Sangtae
    • 식물분류학회지
    • /
    • 제51권1호
    • /
    • pp.109-114
    • /
    • 2021
  • Veronica nakaiana Ohwi (Plantaginaceae) is an endemic taxon on Ulleungdo Island, Korea. We report the second complete chloroplast genome sequence of V. nakaiana. Its genome size is 152,319 bp in length, comprising a large single-copy of 83,195 bp, a small single-copy of 17,702 bp, and a pair of inverted repeat regions of 25,711 bp. The complete genome contains 115 genes, including 51 protein-coding genes, four rRNA genes, and 31 tRNA genes. When comparing the two chloroplast genomes of V. nakaiana, 11 variable sites are recognized: seven SNPs and four indels. Two substitutions in the coding regions are recognized: rpoC2 (synonymous substitution) and rpl22 (nonsynonymous substitution). In nine noncoding regions, one is in the tRNA gene (trnK-UUU), one is in the intron of atpF, and seven are in the intergenic spacers (trnH-GUG~psbA, trnK-UUU, rps16~trnQ-UUG, trnC-GCA~petN, psbZ~trnG-GCC, ycf3~trnS-GGA, ycf4~cemA, and psbB~psbT). The data provide the level of genetic variation in V. nakaiana. This result will be a useful resource to formulate conservation strategies for V. nakaiana, which is a rare endemic species in Korea.

Comparative Analysis of Chloroplast Genome of Dysphania ambrosioides (L.) Mosyakin & Clemants Understanding Phylogenetic Relationship in Genus Dysphania R. Br.

  • Kim, Yongsung;Park, Jongsun;Chung, Youngjae
    • 한국자원식물학회지
    • /
    • 제32권6호
    • /
    • pp.644-668
    • /
    • 2019
  • Dysphania ambrosioides (L.) Mosyakin & Clemants which belongs to Chenopodiaceae/Amaranthaceae sensu in APG system has been known as a useful plant in various fields as well as an invasive species spreading all over the world. To understand its phylogenetic relationship with neighbour species, we completed chloroplast genome of D. ambrosioides collected in Korea. Its length is 151,689 bp consisting of four sub-regions: 83,421 bp of large single copy (LSC) and 18,062 bp of small single copy (SSC) regions are separated by 25,103 bp of inverted repeat (IR) regions. 128 genes (84 protein-coding genes, eight rRNAs, and 36 tRNAs) were annotated. The overall GC content of the chloroplast genome is 36.9% and those in the LSC, SSC and IR regions are 34.9%, 30.3%, and 42.7%, respectively. Distribution of simple sequence repeats are similar to those of the other two Dysphania chloroplasts; however, different features can be utilized for population genetics. Nucleotide diversity of Dysphania chloroplast genomes 18 genes including two ribosomal RNAs contains high nucleotide diversity peaks, which may be genus or species-specific manner. Phylogenetic tree presents that D. ambrosioides occupied a basal position in genus Dysphania and phylogenetic relation of tribe level is presented clearly with complete chloroplast genomes.

엽록체형질전환을 이용한 담배에서의 laccase 유전자의 발현 (Expression of laccase in transgenic tobacco chloroplasts)

  • 유병호;임종민;우제욱;최동욱;김선하;최관삼;유장렬;고석민
    • Journal of Plant Biotechnology
    • /
    • 제35권1호
    • /
    • pp.41-45
    • /
    • 2008
  • Laccase (EC 1.10.3.2) is a small group of enzymes that catalyze the oxidation of a broad range of phenolic compounds including hazardous and recalcitrant pollutants in the environment. This study attempted to develop an efficient system for production of a recombinant laccase by chloroplast genetic transformation of tobacco. Chloroplast transformation vector was constructed and introduced into the tobacco chloroplast genome using particle bombardment. Chloroplast-transformed plants were subsequently regenerated. PCR and southern blot analyses confirmed stable integration of the laccase gene into the chloroplast genome. Northern blot analysis revealed that mRNA of the laccase gene was highly expressed in chloroplast-transformed plants.

Complete Chloroplast Genome Sequence of Dumortiera hirsuta

  • Kwon, Woochan;Kim, Yongsung;Park, Jongsun
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 춘계학술발표회
    • /
    • pp.43-43
    • /
    • 2018
  • Dumortiera hirsuta (Sw.) Nees (Dumortieraceae) is a thallose liverwort distributed in tropics and subtropics. It is the only species in family Dumortieraceae, which is the second basal family in order Marchantiales. D. hirsuta is characterized by hairy receptacles and lacking air chamber. The complete chloroplast genome of D. hirsuta was successfully rescued from raw reads generated by HiSeq4000. Its total length is 122,050 bp consisting of four regions: large single copy (LSC) region (81,697 bp), small single copy (SSC) region (20,061 bp), and two inverted repeats (IRs; 10,146 bp per each). It contained 129 genes (84 coding DNA sequence (CDS), eight rRNAs, and 37 tRNAs); 18 genes including four rRNAs, and five tRNAs are duplicated in the IR regions. The overall GC content of D. hirsuta is 28.7%, which is almost same to that of Marchantia paleacea. Phylogenetic tree based on all genes from whole chloroplast genomes will provides phylogenetic position of D. hirstua. This sequence will be an fundamental resources for further researches of order Marchantiales.

  • PDF

오이풀, 흰오이풀, 긴오이풀의 NGS 기반 유전체 서열의 완전 해독 및 차세대 염기서열 재분석으로 탐색된 SNP 기반 HRM 분자표지 개발 (Development of HRM Markers Based on Identification of SNPs from Next-Generation Sequencing of Sanguisorba officinalis, Sanguisorba tenuifolia f. alba (Trautv. & Mey.) Kitam and Sanguisorba tenuifolia Fisch. ex Link)

  • 심미옥;장지훈;정호경;황태연;김선영;조현우
    • 대한본초학회지
    • /
    • 제34권6호
    • /
    • pp.91-97
    • /
    • 2019
  • Objective : To establish a reliable tool between for the distinction of original plants of Sanguisorbae Radix, we analyzed the complete chloroplast genome sequence of Sanguisorbae Radix and identified single nucleotide polymorphisms (SNPs). Materials and methods : The chloroplast genome sequence of Sanguisorba officinalis, Sanguisorba tenuifolia f. alba (Trautv. & Mey.) Kitam and Sanguisorba tenuifolia Fisch. ex Link obtained using next-generation sequencing technology were described and compared with those of other species to develop specific markers. Candidate genetic markers were identified to distinguish species from the chloroplast sequences of each species using Modified Phred Phrap Consed and CLC Genomics Workbench programs. Results : The structure of the chloroplast genome of each sample that had been assembled and verified was circular, and the length was about 155 kbp. Through comparative analysis of the chloroplast sequences, we found 220 nucleotides, 158 SNPs, and 62 Indel (insertion and/or deletion), to distinguish Sanguisorba officinalis, Sanguisorba tenuifolia f. alba (Trautv. & Mey.) Kitam and Sanguisorba tenuifolia Fisch. ex Link. Finally, 15 specific SNP genetic markers were selected for the verification at positions. Avaliable primers for the dried herb, which is used as medicine, were used to develop the PCR amplification product of Sanguisorbae Radix to assess the applicability of PCR analysis. Conclusion : In this study, we found that Fendel-qPCR analysis based on the chloroplast DNA sequences can be an efficient tool for discrimination of Sanguisorba officinalis, Sanguisorba tenuifolia f. alba (Trautv. & Mey.) Kitam and Sanguisorba tenuifolia Fisch. ex Link.