DOI QR코드

DOI QR Code

The complete chloroplast genome of Zoysia macrostachya (Poaceae): Insights into intraspecific variations and species delimitation of the Zoysia species

  • OH, Sung-Dug (Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • LEE, Seong-Kon (Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • YUN, Doh-Won (Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • SUN, Hyeon-Jin (Subtropical Horticulture Research Institute, Jeju National University) ;
  • KANG, Hong-Gyu (Subtropical Horticulture Research Institute, Jeju National University) ;
  • LEE, Hyo-Yeon (Subtropical Horticulture Research Institute, Jeju National University) ;
  • XI, Hong (InfoBoss Inc. and InfoBoss Research Center) ;
  • PARK, Jongsun (InfoBoss Inc. and InfoBoss Research Center) ;
  • LEE, Bumkyu (Department of Environmental Science & Biotechnology, Medicical Science, Jeonju University)
  • Received : 2021.08.05
  • Accepted : 2021.09.23
  • Published : 2021.09.30

Abstract

The complete chloroplast genome of Zoysia macrostachya Franch. & Sav. isolated in Korea is 135,902 bp long (GC ratio is 38.4%) and has four subregions; 81,546 bp of large single-copy (36.3%) and 12,586 bp of small single-copy (32.7%) regions are separated by 20,885 bp of inverted repeat (44.1%) regions, including 130 genes (83 protein-coding genes, eight rRNAs, and 39 tRNAs). Thirty-nine single nucleotide polymorphisms and 11 insertions and deletion (INDEL) regions were identified from two Z. macrostachya chloroplast genomes, the smallest among other Zoysia species. Phylogenetic trees show that two Z. macrostachya chloroplast genomes are clustered into a single clade. However, we found some incongruency with regard to the phylogenetic position of the Z. macrostachya clade. Our chloroplast genome provides insights into intraspecific variations and species delimitation issues pertaining to the Zoysia species.

Keywords

Acknowledgement

This work was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ014235)" and "Next-Generation BioGreen 21 Program (Project No. PJ 01368504)" Rural Development Administration, Republic of Korea.

References

  1. Bae, T. W., E. Vanjildorj, S. Y. Song, S. Nishiguchi, S. S. Yang, I. J. Song, T. Chandrasekhar, T. W. Kang, J. I. Kim, Y. J. Koh, S. Y. Park, J. Lee, Y.-E. Lee, K. H. Ryu, K. Z. Riu, P.-S. Song and H. Y. Lee. 2008. Environmental risk assessment of genetically engineered herbicide-tolerant Zoysia japonica. Journal of Environmental Quality 37: 207-218. https://doi.org/10.2134/jeq2007.0128
  2. Burke, S. V., M. C. Ungerer and M. R. Duvall. 2018. Investigation of mitochondrial-derived plastome sequences in the Paspalum lineage (Panicoideae; Poaceae). BMC Plant Biology 18: 152. https://doi.org/10.1186/s12870-018-1379-1
  3. Chai, M. and D. Kim. 2000. Agrobacterium-mediated transformation of Korean lawngrass (Zoysia japonica). Journal of the Korean Society for Horticultural Science 41: 455-458.
  4. Cheon, S.-H., M.-A. Woo, S. Jo. Y.-K. Kim and K.-J. Kim. 2021. The chloroplast phylogenomics and systematics of Zoysia (Poaceae). Plants 10: 1517. https://doi.org/10.3390/plants10081517
  5. Cho, M.-S., Y. Kim, S.-C. Kim and J. Park. 2019. The complete chloroplast genome of Korean Pyrus ussuriensis Maxim. (Rosaceae): Providing genetic background of two types of P. ussuriensis. Mitochondrial DNA Part B 4: 2424-2425. https://doi.org/10.1080/23802359.2019.1598802
  6. Choi, J.-S., G.-M. Yang, E.-J. Bae, Y.-B. Park and K.-S. Lee. 2017. Development of new hybrid zoysiagrass cultivar 'Seah'. Weed and Turfgrass Science 6: 306-312.
  7. Ge, Y., T. Norton and Z.-Y. Wang. 2006. Transgenic zoysiagrass (Zoysia japonica) plants obtained by Agrobacterium-mediated transformation. Plant Cell Reports 25: 792-798. https://doi.org/10.1007/s00299-006-0123-8
  8. Greiner, S., P. Lehwark and R. Bock. 2019. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Research 47: W59-W64.
  9. Jiang, D., Z. Zhao, T. Zhang, W. Zhong, C. Liu, Q. Yuan and L. Huang. 2017. The chloroplast genome sequence of Scutellaria baicalensis provides insight into intraspecific and interspecific chloroplast genome diversity in Scutellaria. Genes 8: 227. https://doi.org/10.3390/genes8090227
  10. Katoh, K. and D. M. Standley 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30: 772-780. https://doi.org/10.1093/molbev/mst010
  11. Kim, M., H. Xi and J. Park. 2021a. Genome-wide comparative analyses of GATA transcription factors among 19 Arabidopsis ecotype genomes: Intraspecific characteristics of GATA transcription factors. PLoS One 16: e0252181. https://doi.org/10.1371/journal.pone.0252181
  12. Kim, M., H. Xi, S. Park, Y. Yun and J. Park. 2021b. Genome-wide comparative analyses of GATA transcription factors among seven Populus genomes. Scientific Reports 11: 16578. https://doi.org/10.1038/s41598-021-95940-5
  13. Kim, Y., K.-I. Heo and J. Park. 2019. The second complete chloroplast genome sequence of Pseudostellaria palibiniana (Takeda) Ohwi (Caryophyllaceae): Intraspecies variations based on geographical distribution. Mitochondrial DNA Part B 4: 1310-1311. https://doi.org/10.1080/23802359.2019.1591179
  14. Kumar, S., G. Stecher, M. Li, C. Knyaz and K. Tamura. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
  15. Lee, B. and J. Park. 2021a. The complete chloroplast genome of Zoysia matrella (L.) Merr. isolated in Korea (Poaceae): Investigation of intraspecific variations on chloroplast genomes. Mitochondrial DNA Part B Resources 6: 572-574. https://doi.org/10.1080/23802359.2021.1875907
  16. Lee, B. and J. Park. 2021b. The complete chloroplast genome of Zoysia japonica Steud. isolated in Korea (Poaceae): Investigation of potential molecular markers on Z. japonica chloroplast genomes. Plant Biotechnology Report. Advanced online publication. https://doi.org/10.1007/s11816-021-00708-y.
  17. Li, C., Y. Zheng and P. Huang. 2020. Molecular markers from the chloroplast genome of rose provide a complementary tool for variety discrimination and profiling. Scientific Reports 10: 12188. https://doi.org/10.1038/s41598-020-68092-1
  18. Li, H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at: https://arxiv.org/abs/1303.3997.
  19. Li, H., B. Handsaker, A. Wysoker, T. Fennel, J. Ruan, N. Homer, G. Marth, G. Abecasis and R. Durbin. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078-2079. https://doi.org/10.1093/bioinformatics/btp352
  20. Liu, Q., X. Li, M. Li, W. Xu, T. Schwarzacher and J. S. Heslop-Harrison. 2020. Comparative chloroplast genome analyses of Avena: Insights into evolutionary dynamics and phylogeny. BMC Plant Biology 20: 406. https://doi.org/10.1186/s12870-020-02621-y
  21. Loch, D. S., M. Ebina, J. S. Choi and L. Han. 2017. Ecological implications of Zoysia species, distribution, and adaptation for management and use of zoysiagrasses. International Turfgrass Society Research Journal 13: 11-25. https://doi.org/10.2134/itsrj2016.10.0857
  22. Loeuille, B., V. Thode, C. Siniscalchi, S. Andrade, M. Rossi and J. R. Pirani. 2021. Extremely low nucleotide diversity among thirty-six new chloroplast genome sequences from Aldama (Heliantheae, Asteraceae) and comparative chloroplast genomics analyses with closely related genera. PeerJ 9:e10886. https://doi.org/10.7717/peerj.10886
  23. Min, J., Y. Kim, H. Xi, T. Jang, G. Kim, J. Park and J.-H. Park. 2019. The complete chloroplast genome of a new candidate cultivar, Sang Jae, of Abeliophyllum distichum Nakai (Oleaceae): Initial step of A. distichum intraspecies variations atlas. Mitochondrial DNA Part B Resources 4: 3176-3718.
  24. Moser, L. E., B. L. Burson and L. E. Sollenberger. 2004. Warm-Season (C4) Grasses. American Society of Agronomy, Madison, WI, 1171 pp.
  25. Ogihara, Y., K. Isono, T. Kojima, A. Endo, M. Hanaoka, T. Shiina, T. Terachi, S. Utsugi, M. Murata, N. Mori, S. Takumi, K. Ikeo, T. Gojobori, R. Murai, K. Murai, Y. Matsuoka, Y. Ohnishi, H. Tajiri and K. Tsunewaki. 2000. Chinese spring wheat (Triticum aestivum L.) chloroplast genome: Complete sequence and contig clones. Plant Molecular Biology Reporter 18: 243-253. https://doi.org/10.1007/BF02823995
  26. Park, J., J.-H. An, Y. Kim, D. Kim, B.-G. Yang and T. Kim. 2020a. Database of National Species List of Korea: The taxonomical systematics platform for managing scientific names of Korean native species. Journal of Species Research 9: 233-246. https://doi.org/10.12651/JSR.2020.9.3.233
  27. Park, J., Y. Bae, B.-Y. Kim, G.-H. Nam, J.-M. Park, B. Y. Lee, H.-J. Suh and S.-H. Oh. 2021a. The complete chloroplast genome of Campanula takesimana Nakai from Dokdo Island in Korea (Campanulaceae). Mitochondrial DNA Part B Resources 6: 135-137. https://doi.org/10.1080/23802359.2020.1851157
  28. Park, J., K.-I. Heo, Y. Kim and W. Kwon. 2019a. The complete chloroplast genome of Potentilla freyniana Bornm. (Rosaceae). Mitochondrial DNA Part B Resources 4: 2420-2421. https://doi.org/10.1080/23802359.2019.1565977
  29. Park J., Y. Kim, W. Kwon, H. Xi and C.-H. Park. 2021b. The complete chloroplast genome sequence of new species candidate of Plantago depressa Willd. in Korea (Plantaginaceae). Mitochondrial DNA Part B Resources 6: 1961-1963. https://doi.org/10.1080/23802359.2021.1935356
  30. Park, J., Y. Kim, H. Xi, T. Jang and J.-H. Park. 2019b. The complete chloroplast genome of Abeliophyllum distichum Nakai (Oleaceae), cultivar Ok Hwang 1ho: Insights of cultivar specific variations of A. distichum. Mitochondrial DNA Part B Resources 4: 1640-1642. https://doi.org/10.1080/23802359.2019.1605851
  31. Park, J., J. Min, Y. Kim and Y. Chung. 2021c. The comparative analyses of six complete chloroplast genomes of morphologically diverse Chenopodium album L. (Amaranthaceae) collected in Korea. International Journal of Genomics 2021: 6643444.
  32. Park, J., J. Min, Y. Kim, H. Xi, W. Kwon, T. Jang, G. Kim and J.-H. Park. 2019c. The complete chloroplast genome of a new candidate cultivar, Dae Ryun, of Abeliophyllum distichum Nakai (Oleaceae). Mitochondrial DNA Part B Resources 4: 3713-3715. https://doi.org/10.1080/23802359.2019.1679676
  33. Park, J., S. Park, T. Jang, G. Kim and J.-H. Park. 2021d. The complete chloroplast genome of Abeliophyllum distichum f. lilacinum Nakai (Oleaceae) from the Chungbuk Province. Mitochondrial DNA Part B Resources 6: 1754-1756. https://doi.org/10.1080/23802359.2021.1931513
  34. Park, J., H. Xi and S.-H. Oh. 2020. Comparative chloroplast genomics and phylogenetic analysis of the Viburnum dilatatum complex (Adoxaceae) in Korea. Korean Journal of Plant Taxonomy 50: 8-16. https://doi.org/10.11110/kjpt.2020.50.1.8
  35. Park, J., H. Xi and Y. Kim. 2021e. The complete mitochondrial genome of Arabidopsis thaliana (Brassicaceae) isolated in Korea. Korean Journal of Plant Taxonomy 51: 176-180. https://doi.org/10.11110/kjpt.2021.51.2.176
  36. Park, J., H. Xi and Y. Kim. 2020b. The complete chloroplast genome of Arabidopsis thaliana isolated in Korea (Brassicaceae): An investigation of intraspecific variations of the chloroplast genome of Korean A. thaliana. International Journal of Genomics 2020: 3236461.
  37. Park, J., H. Xi, Y. Kim, S. Nam and K.-I. Heo. 2020c. The complete mitochondrial genome of new species candidate of Rosa rugosa (Rosaceae). Mitochondrial DNA Part B Resources 5: 3435-3437. https://doi.org/10.1080/23802359.2020.1821820
  38. Park, J., H. Xi, J. Son, H. T. Shin, H. Kang and S. Park. 2021f. The complete chloroplast genome of Castanopsis sieboldii (Makino) Hatus (Fagaceae). Mitochondrial DNA Part B Resources 6: 2743-2745. https://doi.org/10.1080/23802359.2021.1966339
  39. Park, J., N. Yun and S.-H. Oh. 2019d. The complete chloroplast genome of an endangered species in Korea, Halenia corniculata (L.) Cornaz (Gentianaceae). Mitochondrial DNA Part B Resources 4: 1539-1540. https://doi.org/10.1080/23802359.2019.1601532
  40. Ronquist, F., M. Teslenko, P. Van Der Mark, D. L. Ayres, A. Darling, S. Hohna, B. Larget, L. Liu, M. A. Suchard and J. P. Huelsenbeck. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539-542. https://doi.org/10.1093/sysbio/sys029
  41. Soreng, R. J., P. M. Peterson, K. Romaschenko, G. Davidse, F. O. Zuloaga, E. J. Judziewicz, T. S. Filgueiras, J. I. Davis and O. Morrone. 2015. A worldwide phylogenetic classification of the Poaceae (Gramineae). Journal of Systematics and Evolution 53: 117-137. https://doi.org/10.1111/jse.12150
  42. Sun, H.-J., I.-J. Song, T.-W. Bae and H.-Y. Lee. 2010. Recent developments in biotechnological improvement of Zoysia japonica Steud. Journal of Plant Biotechnology 37: 400-407. https://doi.org/10.5010/JPB.2010.37.4.400
  43. Tanaka, H., H. Hirakawa, M. Muguerza, M. Hashiguchi, S. Tabata, R. Akashi and S. Sato. 2016. The complete chloroplast genome sequence of Zoysia matrella (L.) Merr. Crop Science 56: 1206-1212. https://doi.org/10.2135/cropsci2015.08.0517
  44. Wambugu, P. W., M. Brozynska, A. Furtado, D. L. Waters and R. J. Henry. 2015. Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences. Scientific Reports 5: 13957. https://doi.org/10.1038/srep13957
  45. Wang, R., X. Wang, K. Liu, X.-J. Zhang, L.-Y. Zhang and S.-J. Fan. 2020. Comparative transcriptome analysis of halophyte Zoysia macrostachya in response to salinity stress. Plants 9: 458. https://doi.org/10.3390/plants9040458
  46. Yoo, S.-C., S.-H. Oh and J. Park. 2021. Phylogenetic position of Daphne genkwa (Thymelaeaceae) inferred from complete chloroplast data. Korean Journal of Plant Taxonomy 51: 171-175. https://doi.org/10.11110/kjpt.2021.51.2.171
  47. Yu, T. Y., D. Y. Yeam, Y. J. Kim and S. J. Kim. 1974. Morphological studies on Korean lawn grasses (Zoysia spp.). Journal of the Korean Society for Horticultural Science 15: 79-91.
  48. Zerbino, D. R. and E. Birney. 2008. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Research 18: 821-829. https://doi.org/10.1101/gr.074492.107
  49. Zhao, Q.-Y., Y. Wang, Y.-M. Kong, D. Luo, X. Li and P. Hao. 2011. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: A comparative study. BMC Bioinformatics 12: S2.