• Title/Summary/Keyword: Chlorophyll a concentration

Search Result 892, Processing Time 0.032 seconds

Remote Estimation Models for Deriving Chlorophyll-a Concentration using Optical Properties in Turbid Inland Waters : Application and Valuation (분광특성을 이용한 담수역 클로로필-a 원격 추정 모형의 적용과 평가)

  • Lee, Hyuk;Kang, Taegu;Nam, Gibeom;Ha, Rim;Cho, Kyunghwa
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.3
    • /
    • pp.272-285
    • /
    • 2015
  • Accurate assessment of chlorophyll-a (Chl-a) concentrations in inland waters using remote sensing is challenging due to the optical complexity of case 2 waters. and the inherent optical properties (IOPs) of natural waters are the most significant factors affecting light propagation within water columns, and thus play indispensable roles on estimation of Chl-a concentrations. Despite its importance, no IOPs retrieval model was specifically developed for inland water bodies, although significant efforts were made on oceanic inversion models. So we have applied and validated a recently developed Red-NIR three-band model and an IOPs Inversion Model for estimating Chl-a concentration and deriving inland water IOPs in Lake Uiam. Three band and IOPs based Chl-a estimation model accuracy was assessed with samples collected in different seasons. The results indicate that this models can be used to accurately retrieve Chl-a concentration and absorption coefficients. For all datasets the determination coefficients of the 3-band models versus Chl-a concentration ranged 0.65 and 0.88 and IOPs based model versus Chl-a concentration varied from 0.73 to 0.83 respectively. and Comparison between 3-band and IOPs based models showed significant performance with decrease of root mean square error from 18% to 33.6%. The results of this study provides the potential of effective methods for remote monitoring and water quality management in turbid inland water bodies using hyper-spectral remote sensing.

Estimation of chlorophyll and pheophytin contents of rice (Oryza sativa L.) leaf in seedling bed using CIE chromaticity diagram

  • Kim, Tae Sung;Ham, Hyun Don;Lee, Mi Hyun;Park, Ki Bae;Yoo, Sung Yung;Kim, Tae Wan
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.243-243
    • /
    • 2017
  • Leaf colors of rice can be used to identify stress level due to its adaptation to environmental change. For most leaves green-related colors are sourced from chlorophyll a and b. For most leaves green-related colors are consisted of chlorophyll a and b. Chlorophyll concentration is normally measured using a spectrophotometer in laboratory. In some remote observation fields, it is impossible to collect the leaves, preserve them, and bring them to laboratory to measure their chlorophyll content. The measurement of chlorophyll content is observed through its color. Using CIE chromaticity diagram leaf color information in RGB is transformed into wavelength (in nm). Pheophytin contents were also analyzed in 95% ethanol extracts. In the process of leaf development of rice young seedling, both pigments were compared. Leaf samples from different rice seedling bed is taken, their colors and RGB values are recorded using Photoshop Image Analysis. SPAD-502 values were also measured. The chlorophyll and Pheophytin contents were fully estimated by ${\rightthreetimes}_{avg}$ on CIE chromaticity diagram.

  • PDF

Comparison of Chlorophyll Algorithms in the Bohai Sea of China

  • Xiu, Peng;Liu, Yuguang;Rong, Zengrui;Zong, Haibo;Li, Gang;Xing, Xinogang;Cheng, Yongcun
    • Ocean Science Journal
    • /
    • v.42 no.4
    • /
    • pp.199-209
    • /
    • 2007
  • Empirical band-ratio algorithms and artificial neural network techniques to retrieve sea surface chlorophyll concentrations were evaluated in the Bohai Sea of China by using an extensive field observation data set. Bohai Sea represents an example of optically complex case II waters with high concentrations of colored dissolved organic mattei (CDOM). The data set includes coincident measurements of radiometric quantities and chlorophyll a concentration (Chl), which were taken on 8 cruises between 2003 and 2005, The data covers a range of variability in Chl in surface waters from 0.3 to 6.5 mg $m^{-3}$. The comparison results showed that these empirical algorithms developed for case I and case II waters can not be applied directly to the Bohai Sea of china, because of significant biases. For example, the mean normalized bias (MNB) for OC4V4 product was 1.85 and the root mean square (RMS) error is 2.26.

Chemical Characteristics and Eutrophication in Cheonsu Bay, West Coast of Korea (한국 서해 천수만의 화학적 수질특성과 부영양화)

  • Kim, Dong-Seon;Lim, Dhong-Il;Jeon, Soo-Kyung;Jung, Hoi-Soo
    • Ocean and Polar Research
    • /
    • v.27 no.1
    • /
    • pp.45-58
    • /
    • 2005
  • Temperature, salinity, dissolved oxygen, COD, dissolved inorganic nitrogen(DIN), dissolved inorganic phosphorus (DIP), and chlorophyll were measured in the surface and bottom waters of Cheonsu Bay in April, August, December 2003, and Hay 2004. DIN showed a large seasonal variation, with higher values in summer and lower in spring. The significant decrease in DIN concentration was observed from April to May, which may imply the occurrence of spring phytoplankton bloom sometime in these periods. In contrast, DIP did not show distinct seasonal variation, with relatively low values compared with other coastal regions. The low DIP concentration in Cheonsu Bay is ascribed to a limited phosphorus input around Cheonsu Bay. The Nf ratios of Cheonsu Bay much higher than the Redfield ratio(16) in all season indicate that phytoplankton growth is limited by phosphorus. Based on low chlorophyll concentrations and eutrophication index, Cheonsu Bay has not been in eutrophic condition during our observation periods. In the artificial lakes located around Cheonsu Bay, however, chlorophyll concentrations were very high, mostly over $10{\mu}g\;l^{-1}$, indicating that they are now in severe eutrophic condition.

Mercury-Specific Effects on Photosynthetic apparatus of Barley Chloroplasts Compared with Copper and Zinc Ions (구리${\cdot}$아연과 비교한 보리 엽록체의 광합성 기구에 미치는 수은 이온의 특이한 효과)

  • 문병용;전현식
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.1.1-11
    • /
    • 1992
  • To find heavy metal-specific effects on the photosynthetic apparatus of higher plants, we investigated effects of $CuCl_2$, HgCl_2$ and $ZnCl_2$ on electron transport activity and chlorophyll fluorescence induction kinetics of chloroplasts isolated from barley seedlings. Effects on some related processes such as germination, growth and photosynthetic pigments of the test plants were also studied. Germination and growth rate were inhibited in a concentration-dependent manner by these metals. Mercury was shown to be the most potent inhibitor of germination, growth and biosynthesis of photosynthetic pigments of barley plants. In the inhibition of electron transport activity, quantum yield of PS II, and chlorophyll fluorescence induction kinetics of chloroplasts isolated from barley seedlings, mercury chloride showed more pronounced effects than other two metals. Contrary to the effects of other two metals, mercury chloride increased variable fluorescence significantly and abolished qE in the fluorescence induction kinetics from broken chloroplasts of barley seedlings. This increase in variable fluorescence is due to the inhibition of the electron transport chain after PS ll and the following dark reactions. The inhibition of qE could be attributed to the interruption of pH formation and do-epoxidation of violaxathin to zeaxanthin in thylakoids by mercury. This unique effect of mercury on chlorophyll fluorescence induction pattern could be used as a good indicator for testing the presence and/or the concentration of mercury in the samples contaminated with heavy metals.

  • PDF

Comparison of Chlorophyll-a Prediction and Analysis of Influential Factors in Yeongsan River Using Machine Learning and Deep Learning (머신러닝과 딥러닝을 이용한 영산강의 Chlorophyll-a 예측 성능 비교 및 변화 요인 분석)

  • Sun-Hee, Shim;Yu-Heun, Kim;Hye Won, Lee;Min, Kim;Jung Hyun, Choi
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.6
    • /
    • pp.292-305
    • /
    • 2022
  • The Yeongsan River, one of the four largest rivers in South Korea, has been facing difficulties with water quality management with respect to algal bloom. The algal bloom menace has become bigger, especially after the construction of two weirs in the mainstream of the Yeongsan River. Therefore, the prediction and factor analysis of Chlorophyll-a (Chl-a) concentration is needed for effective water quality management. In this study, Chl-a prediction model was developed, and the performance evaluated using machine and deep learning methods, such as Deep Neural Network (DNN), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost). Moreover, the correlation analysis and the feature importance results were compared to identify the major factors affecting the concentration of Chl-a. All models showed high prediction performance with an R2 value of 0.9 or higher. In particular, XGBoost showed the highest prediction accuracy of 0.95 in the test data.The results of feature importance suggested that Ammonia (NH3-N) and Phosphate (PO4-P) were common major factors for the three models to manage Chl-a concentration. From the results, it was confirmed that three machine learning methods, DNN, RF, and XGBoost are powerful methods for predicting water quality parameters. Also, the comparison between feature importance and correlation analysis would present a more accurate assessment of the important major factors.

Growth and Chlorophyiil Biosynthesis of Vigna angularis under Lead Stress

  • Koo Suh-Young;Jin Sun-Young;Hong Jung-Hee
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.2
    • /
    • pp.145-155
    • /
    • 1997
  • The effect of various supplies of lead singly and in combination with aluminium on growth and chlorophyll biosynthesis was investigated in 7-day-old Vigna angularis seedlings. Expose to 50 uM Pb or more drastically reduced root elongation rate. Significant depressions in root growth was observed within 1 day and no recovery of growth was seen over the duration of treatment period. Root elongation decreased depending on the Pb concentrations. Root growth inhibition was stronger than shoot growth inhibition. The initiation of lateral roots appeared to be more sensitive to Pb than the growth of main roots. Inhibition of root and shoot elongation by Pb was lessened by combined exposure of Pb and Al, suggesting that the presence of Al reverse the inhibitory effect of Pb alone. With the histochemical sodium rhodizonate method the rate of Pb uptake was dependent on the Pb concentration and exposure time of the roots to Pb salts. Pb was first deposited on the root surface and then translocated radially in the root cap cells. During a longer Pb administration (up to 72 h) Pb penetration was nonuniform, with accumulation within the cortex or endodermis. There was drastic reduction in chlorophyll content by Pb. The Pb inhibition of chlorophyll synthesis was concentration dependent. $\delta-Aminolevulinic$ acid dehydratase (ALAD) activity exhibited distinct inhibition from control. Reduction in chlorophyll content was accompanied by proportional changes in ALAD activity. Chlorophyll content and ALAD activity were less affected by combined exposure of Pb and Al, suggesting that Al has a protective effect against the inhibiting action of Pb on photosynthetic activity.

  • PDF

Comparison of Growth and Physiological Responses in Radish for Assay of Nickel Toxicity -II. Effect of Ni on Physiological Responses in Radish- (무에서 니켈 독성검정을 위한 생육 및 생리반응 비교 -II. 니켈에 의한 무의 생리반응-)

  • Han, Kang-Wan;Cho, Jae-Young
    • Applied Biological Chemistry
    • /
    • v.39 no.4
    • /
    • pp.293-296
    • /
    • 1996
  • The present study was carried out to investigate the effect of Ni on germination, cell elongation, ${\alpha}-amylase$ activity, contents of chlorophyll and protein in radish were determined in the water culture. As the concentration of Ni was increased in the water culture, germination of radish was 55% by Ni 10 mg/kg and 30% by Ni 20 mg/kg. The ratio of cell elongation injury was 50%, by two days after Ni 20 mg/kg treatment. The injury ratio of ${\alpha}-amylase$ activity was 45% in the same condition and as the time goes on, inhibition of ${\alpha}-amylase$ activity were slightly decreased. Contents of chlorophyll a and b were decreased two days after treatment and chlorophyll a was more inhibited than chlorophyll b. Also changes of the protein contents was slightly decreased. Activity of ${\alpha}-amylase$ was decreased at germination stage, contents of chlorophyll a and b were decreased at growing stage.

  • PDF

Contribution of Marine Microbes to Particulate Organic Matter in the Korea Strait

  • Kang, Hun;Kang, Dae-Seok
    • Journal of the korean society of oceanography
    • /
    • v.37 no.1
    • /
    • pp.35-44
    • /
    • 2002
  • To assess the relative contribution of bacterial and phytoplankton biomasses to particulate organic matter (POM) in the water column, microbial abundance and biomass were from two transects in the western channel of the Korea Strait in 1996. Bacterial abundance had a mean value of $5.9{\times}10^5$ cells/ml and chlorophyll-a averaged 0.14 ${\mu}g/l$. Bacterial abundance in the Korea Strait showed a positive relationship with chlorophyll-a concentration, while the distribution of POM did not covary with chlorophyll-a. Particulate organic carbon (POC) and nitrogen (PON) concentrations were greater in August than in October. Bacterial carbon (POC) and nitrogen (PON) concentrations were greater in August than in October. Bacterial carbon and nitrogen biomasses were 7.29 ${\mu}gC/l$ and 1.24 ${\mu}gN/l$, respectively, during the study periods. Bacterial biomass was larger in October than in August due to the autumn phytoplankton bloom. Phytoplankton biomass based on chlorophyll-a was 7.67 ${\mu}gC/l$ for carbon and 1.10${\mu}gN/l$l for nitrogen. The ratio of bacterial carbon (BC) to phytoplankton carbon (Cp) averaged 0.95 in the Korea Strait in 1996. Bacteria may play a more significant role in the dynamics of POM than phytoplankton do in August, with BC/Cp ratio of 1.26. The ratio of BC to Cp increased with a decrease in chlorophyll-a concentration. Averaged over all the samples in both cruises, the contribution of microbial biomass to POC and PON was about 43% and 51%, respectively. Bacterial assemblage constituted a significant fraction of POC (21%) and PON (27%). Phytoplankton accounted for 22% of POC and 24% of PON. Microbial biomass played a more important role in the dynamics of POC and PON in October than in August due to a significant increase in microbial biomass in the southern transect (transect-B) in October by the autumn phytoplankton bloom. This study showed that marine microbes may constitute a significant part in the reservoir of POM in the Korea Strait.

Changes of Photosynthetic Pigment Contents and SOD Activity in the Leaves of Four Tree Species Exposed to SO2 (SO2 노출된 4개 수종의 엽내 광색소 함량 및 SOD 활성 변화)

  • 이재천;한심희;권기원;우수영;최정호
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.1
    • /
    • pp.18-23
    • /
    • 2003
  • This study was conducted to compare physiological responses of Pinus densiflora, Populus ${\times}$ tomentiglandulosa, Quercus acutissima and Eleutherococcus sessiliflorus exposed to SO$_2$, by measuring photosynthetic pigment contents and SOD activity. Four woody plants were exposed to relatively high SO$_2$ concentration (500 ppb, 800 ppb) for 8h day$^{-1}$ for 7 days in a chamber. Photosynthetic pigment contents in the leaves of four species decreased with increase of SO$_2$ concentration; also chlorophyll a, chlorophyll b and total carotenoid content were significantly different among tree species and treatments. The ratio of chlorophyll b to chlorophyll a of E. sessiliflorus and Q. acutissima increased for 500 ppb treatment but decreased at 800 ppb. This result showed that chlorophyll a was destroyed by 500 ppb SO$_2$ and chlorophyll b by 800 ppb SO$_2$. Therefore, the sensitivity of chlorophyll a to SO$_2$ may be higher than that of chlorophyll b. SOD activity differed significantly between species and treatments. SOD activity of E. sessiliflorus and Q. acutissima increased at 500 ppb but decreased at 800 ppb, but P. densiflora and P ${\times}$tomentiglandulosa maintained high SOD activity at both 500 ppb and 800 ppb. Based on the photosynthetic pigment contents and SOD activity in the leaves of four tree species, the tolerance of P. ${\times}$ tomentiglandulosa to SO$_2$ was the highest of four tree species.