References
- Acker, J.G. 1994. The heritage of SeaWiFS: A retrospective on the CZCS NIMBUS Experiment Team (NET) Program, NASA. p. 44. In: The Memo, ed. by S. B. Hooker and E. R. Firestone. NASA Gorddard Space Flight Cent., Greenbelt, MD
- Beale, R. and T. Jackson. 1990. Neural Computing: An Introduction, Adam Hilger, Bristol, UK
- Baruah, P.J., K. Oki., and H. Nishimura. 2000. A neural network model for estimating Surface Chlorophyll and Sediment Content at the Lake Kasumi Gaura of Japan. Proceedings of 21st Asian Conference of Remote Sensing, Taipei, Taiwan
- Bukata, R.P., J.H. Jerome, K. Ya. Kondratyev, and D.Y. Pozdnyakov. 1995. Optical properties and remote sensing of inland and coastal waters. CRC Press, Boca Raton
-
Clark, D.K. 1997. MODIS Algorithm Theoretical Basis Document, Bio- Optical lgorithms-Case 1 Waters, version 1.2, Available from WWW:
- Dayhoff, J. 1990. Neural Network Architectures: An Introduction. Van Nostrand Reinhold, New York
- Darecki, M., and D. Stramski. 2004, An evaluation of MODIS and Sea WIFS bio-optical algorithms in the Baltic Sea. Remote Sens. Environ., 89, 326-350 https://doi.org/10.1016/j.rse.2003.10.012
- Esaias, W.E., M.R. Abbott, I. Barton, O.B. Brown, J.W. Campbell, K.L. Carder, D.K. Clark, R.H. Evans, F.E. Hoge, H.R. Gordon, W.M. Balch, R. Letelier, and P.J. Minnett. 1998. An overview of MODIS capabilities for ocean science observations. IEEE Trans. Geosci. Remote Sens., 36, 1250-1265 https://doi.org/10.1109/36.701076
- Evans, R.H. and H.R. Gordon. 1994. CZCS system calibration: A retrospective examination. J. Geophys. Res., 99, 7293-7307 https://doi.org/10.1029/93JC02151
- Fausett, L. 1994. Fundamentals of neural networks: Architectures, Algorithms, and Applications. Prentice Hall, Englewood Cliffs, N.J
- Gross, L., S. Thiria, R. Frouin, and B.G. Mitchell. 2000. Artificial neural networks for modeling the transfer function between reflectance and phytoplankton pigment concentration. J. Geophys. Res., 106, 3483-3495
- Hooker, S.B. and C.R. McClain. 2000. The calibration and validation of SeaWiFS data. Prog. Oceanogr., 45, 427-465 https://doi.org/10.1016/S0079-6611(00)00012-4
- Keiner, L.E. and X.H. Yan. 1998. A neural network model for estimating sea surface chlorophyll and sediments from thematic mapper imagery. Remote Sens. Environ., 66(2), 153-165 https://doi.org/10.1016/S0034-4257(98)00054-6
- Keiner, L.E. and C.W. Brown. 1999. Estimating oceanic chlorophyll concentrations with neural networks. Int. J. Remote Sens., 20, 189-194 https://doi.org/10.1080/014311699213695
- Krasnopolshy, V., L. Breaker, and W. Gemmil. 1995. A neural network as a nonlinear transfer model for retrieving surface wind speeds from the special sensor microwave imager. J. Geophys. Res., 100, 11033-11045 https://doi.org/10.1029/95JC00857
- Lee, Z.P., K.L. Carder, R.G. Steward, T.G Peacock, C.O. Davis, and J.L. Mueller. 1996. Remote-sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements. Proc. SPIE (Ocean Optics XIII), 2963, 160-166
- Lee, Z.P. and K.L Carder. 2004. Absorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance. Remote Sens. Environ., 89, 361-368 https://doi.org/10.1016/j.rse.2003.10.013
- Masters, T. 1993. Practical Neural Network Recipes in C++. Academic, San Diego, CA
- Masters, T. 1995. Advanced Algorithms for Neural networks: AC++ Sourcebook. Wiley, New York
- Morel, A. 1998. Minimum requirements for an operational ocean-colour sensor for the open ocean. IOCCG Report, vol. 1. Dartmouth, Nova Scotia, IOCCG Project Office. 46 p
- O'Reilly, J.E, S. Maritorena, B.G. Mitchell, D.A. Siegel, K.L. Carder, S.A. Garver, M. Kahru, and C. McClain. 1998. Ocean color chlorophyll a algorithms for SeaWIFS. J. Geophys. Res., 103(C11), 24937-24953 https://doi.org/10.1029/98JC02160
- O'Reilly, J.E., S. Maritorena, D.A. Siegel, M.C. O'Brien, D. Toole, B.G Mitchell, M. Kahru, F.P. Chavez, P. Strutton, G. Cota, S.B. Hokker, C.R. McClain, K.L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G.F. Moore, J. Aiken, K.R. Arrigo, R. Letelier, and M. Culver. 2000. Ocean Color Chlorophyll a Algorithms for Sea WiFS, OC2 and OC4: Version 4. NASA Technical Memorandum 2000-206892, Vol. 11., NASA Goddard Space Flight Centre, Greenbelt, Maryland
- Schiller, H. and R. Doerffer. 1999. Neural network for emulation of an inverse model - operational derivation of Case II water properties from MERlS data. Int. J. Remote Sens., 30, 1735-1746
- Sathyendranath, S. 2000. Remote sensing of ocean colour in coastal, and other optically-complex, waters. IOCCG Report, vol. 3. Dartmouth, Nova Scotia, IOCCG Project Office. 140 p
- Tang, J. W., X.M. Wang, and Q.J. Song. 2004. The statistic inversion algorithms of water constituents for the Huanghai SeaandtheEastChinaSea.ActaOceanol.Sin., 23(4),617-626
- Wasserman, P. 1989. Neural Computing. Van Nostrand Reinhold, New York
- Xiu, P. and Y.G. Liu. 2006. Study on the correlation between chlorophyll maximum and remote sensing data. J. Ocean Univ. China, Oceanic & Coastal Sea Res., 5(3), 213-218 https://doi.org/10.1007/s11802-006-0004-3
- Xiu, P., YG. Liu, and X.B. Yin. 2007. Preliminary study on distribution of deep chlorophyll maximum and remote sensing model in the Bohai Sea of China. Int. J. Remote Sens., 28(11), 2599-2612 https://doi.org/10.1080/01431160600981509
- Zhang, T., F. Fell, Z.S. Liu, R. Preusker, J. Fischer, and M.X. He. 2003. Evaluating the performance of artificial neural network techniques for pigment retrieval from ocean color in Case I waters. J. Geophys. Res., 108, 3286-3298 https://doi.org/10.1029/2002JC001638