Comparison of Chlorophyll Algorithms in the Bohai Sea of China

  • Xiu, Peng (College of Physical and Environmental Oceanography, Physical Oceanography Laboratory, Ocean University of China) ;
  • Liu, Yuguang (College of Physical and Environmental Oceanography, Physical Oceanography Laboratory, Ocean University of China) ;
  • Rong, Zengrui (College of Physical and Environmental Oceanography, Physical Oceanography Laboratory, Ocean University of China) ;
  • Zong, Haibo (College of Physical and Environmental Oceanography, Physical Oceanography Laboratory, Ocean University of China) ;
  • Li, Gang (Shenzhen Key Laboratory for Coastal and Atmospheric Research, Pku-hkust Shenzhen-hongkong Institution, China) ;
  • Xing, Xinogang (College of Physical and Environmental Oceanography, Physical Oceanography Laboratory, Ocean University of China) ;
  • Cheng, Yongcun (College of Physical and Environmental Oceanography, Physical Oceanography Laboratory, Ocean University of China)
  • Published : 2007.12.31

Abstract

Empirical band-ratio algorithms and artificial neural network techniques to retrieve sea surface chlorophyll concentrations were evaluated in the Bohai Sea of China by using an extensive field observation data set. Bohai Sea represents an example of optically complex case II waters with high concentrations of colored dissolved organic mattei (CDOM). The data set includes coincident measurements of radiometric quantities and chlorophyll a concentration (Chl), which were taken on 8 cruises between 2003 and 2005, The data covers a range of variability in Chl in surface waters from 0.3 to 6.5 mg $m^{-3}$. The comparison results showed that these empirical algorithms developed for case I and case II waters can not be applied directly to the Bohai Sea of china, because of significant biases. For example, the mean normalized bias (MNB) for OC4V4 product was 1.85 and the root mean square (RMS) error is 2.26.

Keywords

References

  1. Acker, J.G. 1994. The heritage of SeaWiFS: A retrospective on the CZCS NIMBUS Experiment Team (NET) Program, NASA. p. 44. In: The Memo, ed. by S. B. Hooker and E. R. Firestone. NASA Gorddard Space Flight Cent., Greenbelt, MD
  2. Beale, R. and T. Jackson. 1990. Neural Computing: An Introduction, Adam Hilger, Bristol, UK
  3. Baruah, P.J., K. Oki., and H. Nishimura. 2000. A neural network model for estimating Surface Chlorophyll and Sediment Content at the Lake Kasumi Gaura of Japan. Proceedings of 21st Asian Conference of Remote Sensing, Taipei, Taiwan
  4. Bukata, R.P., J.H. Jerome, K. Ya. Kondratyev, and D.Y. Pozdnyakov. 1995. Optical properties and remote sensing of inland and coastal waters. CRC Press, Boca Raton
  5. Clark, D.K. 1997. MODIS Algorithm Theoretical Basis Document, Bio- Optical lgorithms-Case 1 Waters, version 1.2, Available from WWW:
  6. Dayhoff, J. 1990. Neural Network Architectures: An Introduction. Van Nostrand Reinhold, New York
  7. Darecki, M., and D. Stramski. 2004, An evaluation of MODIS and Sea WIFS bio-optical algorithms in the Baltic Sea. Remote Sens. Environ., 89, 326-350 https://doi.org/10.1016/j.rse.2003.10.012
  8. Esaias, W.E., M.R. Abbott, I. Barton, O.B. Brown, J.W. Campbell, K.L. Carder, D.K. Clark, R.H. Evans, F.E. Hoge, H.R. Gordon, W.M. Balch, R. Letelier, and P.J. Minnett. 1998. An overview of MODIS capabilities for ocean science observations. IEEE Trans. Geosci. Remote Sens., 36, 1250-1265 https://doi.org/10.1109/36.701076
  9. Evans, R.H. and H.R. Gordon. 1994. CZCS system calibration: A retrospective examination. J. Geophys. Res., 99, 7293-7307 https://doi.org/10.1029/93JC02151
  10. Fausett, L. 1994. Fundamentals of neural networks: Architectures, Algorithms, and Applications. Prentice Hall, Englewood Cliffs, N.J
  11. Gross, L., S. Thiria, R. Frouin, and B.G. Mitchell. 2000. Artificial neural networks for modeling the transfer function between reflectance and phytoplankton pigment concentration. J. Geophys. Res., 106, 3483-3495
  12. Hooker, S.B. and C.R. McClain. 2000. The calibration and validation of SeaWiFS data. Prog. Oceanogr., 45, 427-465 https://doi.org/10.1016/S0079-6611(00)00012-4
  13. Keiner, L.E. and X.H. Yan. 1998. A neural network model for estimating sea surface chlorophyll and sediments from thematic mapper imagery. Remote Sens. Environ., 66(2), 153-165 https://doi.org/10.1016/S0034-4257(98)00054-6
  14. Keiner, L.E. and C.W. Brown. 1999. Estimating oceanic chlorophyll concentrations with neural networks. Int. J. Remote Sens., 20, 189-194 https://doi.org/10.1080/014311699213695
  15. Krasnopolshy, V., L. Breaker, and W. Gemmil. 1995. A neural network as a nonlinear transfer model for retrieving surface wind speeds from the special sensor microwave imager. J. Geophys. Res., 100, 11033-11045 https://doi.org/10.1029/95JC00857
  16. Lee, Z.P., K.L. Carder, R.G. Steward, T.G Peacock, C.O. Davis, and J.L. Mueller. 1996. Remote-sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements. Proc. SPIE (Ocean Optics XIII), 2963, 160-166
  17. Lee, Z.P. and K.L Carder. 2004. Absorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance. Remote Sens. Environ., 89, 361-368 https://doi.org/10.1016/j.rse.2003.10.013
  18. Masters, T. 1993. Practical Neural Network Recipes in C++. Academic, San Diego, CA
  19. Masters, T. 1995. Advanced Algorithms for Neural networks: AC++ Sourcebook. Wiley, New York
  20. Morel, A. 1998. Minimum requirements for an operational ocean-colour sensor for the open ocean. IOCCG Report, vol. 1. Dartmouth, Nova Scotia, IOCCG Project Office. 46 p
  21. O'Reilly, J.E, S. Maritorena, B.G. Mitchell, D.A. Siegel, K.L. Carder, S.A. Garver, M. Kahru, and C. McClain. 1998. Ocean color chlorophyll a algorithms for SeaWIFS. J. Geophys. Res., 103(C11), 24937-24953 https://doi.org/10.1029/98JC02160
  22. O'Reilly, J.E., S. Maritorena, D.A. Siegel, M.C. O'Brien, D. Toole, B.G Mitchell, M. Kahru, F.P. Chavez, P. Strutton, G. Cota, S.B. Hokker, C.R. McClain, K.L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G.F. Moore, J. Aiken, K.R. Arrigo, R. Letelier, and M. Culver. 2000. Ocean Color Chlorophyll a Algorithms for Sea WiFS, OC2 and OC4: Version 4. NASA Technical Memorandum 2000-206892, Vol. 11., NASA Goddard Space Flight Centre, Greenbelt, Maryland
  23. Schiller, H. and R. Doerffer. 1999. Neural network for emulation of an inverse model - operational derivation of Case II water properties from MERlS data. Int. J. Remote Sens., 30, 1735-1746
  24. Sathyendranath, S. 2000. Remote sensing of ocean colour in coastal, and other optically-complex, waters. IOCCG Report, vol. 3. Dartmouth, Nova Scotia, IOCCG Project Office. 140 p
  25. Tang, J. W., X.M. Wang, and Q.J. Song. 2004. The statistic inversion algorithms of water constituents for the Huanghai SeaandtheEastChinaSea.ActaOceanol.Sin., 23(4),617-626
  26. Wasserman, P. 1989. Neural Computing. Van Nostrand Reinhold, New York
  27. Xiu, P. and Y.G. Liu. 2006. Study on the correlation between chlorophyll maximum and remote sensing data. J. Ocean Univ. China, Oceanic & Coastal Sea Res., 5(3), 213-218 https://doi.org/10.1007/s11802-006-0004-3
  28. Xiu, P., YG. Liu, and X.B. Yin. 2007. Preliminary study on distribution of deep chlorophyll maximum and remote sensing model in the Bohai Sea of China. Int. J. Remote Sens., 28(11), 2599-2612 https://doi.org/10.1080/01431160600981509
  29. Zhang, T., F. Fell, Z.S. Liu, R. Preusker, J. Fischer, and M.X. He. 2003. Evaluating the performance of artificial neural network techniques for pigment retrieval from ocean color in Case I waters. J. Geophys. Res., 108, 3286-3298 https://doi.org/10.1029/2002JC001638