• Title/Summary/Keyword: Chlorine Resistance

Search Result 83, Processing Time 0.023 seconds

Compressive Strength and Chloride Ion Penetration Resistance of SHCC Coated by PDMS-based Penetrating Water Repellency (PDMS 흡수방지재를 적용한 SHCC의 압축강도 및 염화물이온 침투저항성)

  • Lee, Jun-Hee;Hyun, Jung-Hwan;Park, Su-Hyun;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.16-23
    • /
    • 2018
  • In this study, Polydimethylsiloxane (PDMS) was applied to Strain Hardening Cement Composites (SHCC) for penetrating water repellency. The penetration depth of PDMS, strength of SHCC, and chloride ion penetration resistance of SHCC were investigated. As a result of measuring penetration depth of PDMS when applying different application method, it was confirmed that all methods satisfied the requirements of KS F 4930. Although the immersion method showed the largest penetration depth, the spray method was considered to be more appropriate considering the ease of field application. Compressive strength tests showed that the penetration depth of PDMS decreased as the compressive strength of SHCC increased. The compressive strength of M4-A and M4-B specimens with large PDMS penetration depths decreased by 9.6% and 8.0%, respectively, compared with those of M4 specimens produced without PDMS. Compressive strengths of the M1-A and M1-B specimens with small PDMS penetration depths were reduced by 4% and 2.2%, respectively, compared with the M1 specimen. As a result, it can be seen that the strength reduction rate of SHCC increases as the penetration depth of PDMS increases. The chlorine ion penetration tests showed that the chlorine ion penetration resistance increases with the penetration depth of PDMS.

Environmental effects on plant calmodulin system (식물 칼모듈린 체계에 미치는 환경적 요인의 영향)

  • Yang, Moon-Sik;Oh, Suk-Heung
    • Applied Biological Chemistry
    • /
    • v.39 no.1
    • /
    • pp.25-31
    • /
    • 1996
  • Transgenic tobacco plants expressing calmodulin derivative($lys{\rightarrow}ile$ 115 calmodulin) and hygromycin resistance genes or hygromycin resistance gene alone(control) were generated by Agrobacterium-mediated DNA transfer. Seeds obtained from the transgenic plants($F_o$) were tested for resistance to hygromycin and the expected 3 : 1 ratio was observed. The expression of calmodulin derivative in the tobacco plants was identified by a combined method of Western blot and Chemiluminescence. The effects of surface sterilizers on the germiation of seeds from transgenic tobacco plants were tested in Murashige and Skoog agar medium. Seeds obtained from transgenic tobacoo plants expressing the calmodulin derivative showed no fungi contamination with normal germination by treating with sterilized water alone or sodium hypochlorite(2% effective chlorine). In contrast, seeds from the control transgenic tobacco plants showed severe contamination with fungi by treating with sterilized water alone and showed no contamination with normal germination by treating with sodium hypochlorite(2% chlorine). The effects of calcium concentration on the germination of seeds from transgenic tobacco plants were tested in Murashige and Skoog agar medium. Seeds obtained from transgenic tobacco plants expressing the calmodulin derivative showed better germination frequency than that of the control transgenic tobacco seeds in the medium containing 30 mM $CaCl_2$. The data raise the possibility that the expression of calmodulin derivative gene in tobacco plants could increase adaptability of the seeds to environmental stresses.

  • PDF

Estimation of Setting Time of Chlorine By-pass System Dust Mortar using Setting Time Estimation (현장용 응결시간추정계를 이용한 고염화물 모르타르의 응결시간 추정)

  • Lee, Hyuk-Ju;Han, Jun-Hui;Hyun, Seong Yong;Shin, Yong-Seop;Lee, Jun-Seok;Han, Min-Choel
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.6-7
    • /
    • 2018
  • In the previous study, durometer, namely rubber hardness tester Was used to confirm the possibility of using the setting time of concrete for determination. in this study, the possibility of using condensation time judgment condensation estimation system by comparing the measuring station setting estimation system Measuring needle of the proctor penetration resistance tester by newly making a measurement needle and refining the coagulation estimation system Want to make sure. As a result of this study, it was possible to use one condensation estimation system showing similar correlation between the two types of durometer showing high correlation with the penetration resistance value of proctor testers, It is considered to be fruitful to use the dew condensation estimation system for determining the setting time.

  • PDF

원자층 식각방법을 이용한, Contact Hole 내의 Damage Layer 제거 방법에 대한 연구

  • Kim, Jong-Gyu;Jo, Seong-Il;Lee, Seong-Ho;Kim, Chan-Gyu;Gang, Seung-Hyeon;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.244.2-244.2
    • /
    • 2013
  • Contact Pattern을 Plasma Etching을 통해 Pattering 공정을 진행함에 있어서 Plasma 내에 존재하는 High Energy Ion 들의 Bombardment 에 의해, Contact Bottom 의 Silicon Lattice Atom 들은 Physical 한 Damage를 받아 Electron 의 흐름을 방해하게 되어, Resistance를 증가시키게 된다. 또한 Etchant 로 사용되는 Fluorine 과 Chlorine Atom 들은, Contact Bottom 에 Contamination 으로 작용하게 되어, 후속 Contact 공정을 진행하면서 증착되는 Ti 나 Co Layer 와 Si 이 반응하는 것을 방해하여 Ohmic Contact을 형성하기 위한 Silicide Layer를 형성하지 못하도록 만든다. High Aspect Ratio Contact (HARC) Etching 을 진행하면서 Contact Profile을 Vertical 하게 형성하기 위하여 Bias Power를 증가하여 사용하게 되는데, 이로부터 Contact Bottom에서 발생하는 Etchant 로 인한 Damage 는 더욱 더 증가하게 된다. 이 Damage Layer를 추가적인 Secondary Damage 없이 제거하기 위하여 본 연구에서는 원자층 식각방법(Atomic Layer Etching Technique)을 사용하였다. 실험에 사용된 원자층 식각방법을 이용하여, Damage 가 발생한 Si Layer를 Secondary Damage 없이 효과적으로 Control 하여 제거할 수 있음을 확인하였으며, 30 nm Deep Contact Bottom 에서 Damage 가 제거될 수 있음을 확인하였다. XPS 와 Depth SIMS Data를 이용하여 상기 실험 결과를 확인하였으며, SEM Profile 분석을 통하여, Damage 제거 결과 및 Profile 변화 여부를 확인하였으며, 4 Point Prove 결과를 통하여 결과적으로 Resistance 가 개선되는 결과를 얻을 수 있었다.

  • PDF

Effect of Seawater Temperature on the Cyclic Potentiodynamic Polarization Characteristics and Microscopic Analysis on Damage Behavior of Super Austenitic Stainless Steel (슈퍼오스테나이트 스테인리스강의 순환동전위 분극특성에 미치는 해수온도의 영향과 손상 거동에 관한 미시적 분석)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.412-425
    • /
    • 2021
  • Because austenitic stainless steel causes localized corrosion such as pitting and crevice corrosion in environments containing chlorine, corrosion resistance is improved by surface treatment or changes of the alloy element content. Accordingly, research using cyclic potentiodynamic polarization experiment to evaluate the properties of the passivation film of super austenitic stainless steel that improved corrosion resistance is being actively conducted. In this investigation, the electrochemical properties of austenitic stainless steel and super austenitic stainless steel were compared and analyzed through cyclic potentiodynamic polarization experiment with varying temperatures. Repassivation properties were not observed in austenitic stainless steels at all temperature conditions, but super austenitic stainless steels exhibited repassivation behaviors at all temperatures. This is expressed as α values using a relational formula comparing the localized corrosion rate and general corrosion rate. As the α values of UNS S31603 decreased with temperature, the tendency of general corrosion was expected to be higher, and the α value of UNS N08367 increased with increasing temperatures, so it is considered that the tendency of localized corrosion was dominant.

Sulfonated poly(arylene ether copolymer)-g-sulfonated Polystyrene Membrane Prepared Via E-beam Irradiation and Their Saline Water Electrolysis Application (전자빔조사를 이용한 술폰화 폴리아릴렌 에테르 술폰-g-술폰화 폴리스틸렌 분리막 제조 및 염수전기분해 특성평가)

  • Cha, Woo Ju;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.458-462
    • /
    • 2016
  • Saline water electrolysis, known as chlor-alkali (CA) membrane process, is an electrochemical process to generate valued chemicals such as chlorine, hydrogen and sodium hydroxide with high purities higher than 99%, using an electrolytic cell composed of cation exchange membrane, anode and cathode. It is necessary to reduce energy consumption per a unit chemical production. This issue can be solved by decreasing intrinsic resistance of the membrane and the electrodes and/or by reducing their interfacial resistance. In this study, the electron radiation grafting of a $Na^+$ ion-selective polymer was conducted onto a hydrocarbon sulfonated ionomer membrane with high chemical resistance. This approach was effective in improving electrochemical efficiency via the synergistic effect of relatively fast $Na^+$ ion conduction and reduced interfacial resistance.

Resistant Development of Two-spotted Spider Mite, Tetranychus urticae (Tetranychidae) under Alternate Selection of Acaricides (살비제교호도태에 의한 점박이응애의 저항성발달에 관한 연구)

  • 김상수;이승찬
    • Korean journal of applied entomology
    • /
    • v.28 no.4
    • /
    • pp.237-243
    • /
    • 1989
  • These studies were conducted to investigate the development of chemical resistance in two-spotted spider mite (Tetranychus urticae Koch) through alternate selection for a given period of time with four acaricides including ethion of organophophours compound, dicofol of organo-chlorine compound, cyhexatin of organo-tin compound, and biphenthrin of synthetic pyrethroid compound; and to examine multiple-resistance among the acaricides to the selected populations. The development levels of chemical resistance in the two-spotted spider mite were greatly varied under alternate selection with the different chemical-group combination of four acaricides. Resistant levels of the ethion/dicofol-selected population at 13th-13th generation showed 49.4-fold resistance to ethion and 18.1-fold to dicofol; the ethion/cyhexatin-selected population at 9th-9th generation exhibited 28.1-fold to ethion and 5-fold to cyhexatin; the ethion/biphenthrin-selectd population at 10th-10th generation revealed 39.8-fold to ethion and 19.2-fold to biphenthrin. However, the dicofol/cyhexatin-selected population at 9th-9th generation showed 11.3-fold to dicofol and 4.9-fold to cyhexatin, and the dicofol/biphenthrin-selected population at 12th-12th generation exhibited 11.2-fold to dicofol and 9.4- fold to biphenthrin, while the cyhexatin/biphenthrin-selected population at 9th-9th generation revealed 3.7-fold to cyhexatin and 7.7-fold to biphenthrin. In case of alternate selection, the ehtion/dicofol-selected population revealed moderate multiple-resistance level to biphenthrin. The ethion/cyhexatin-selected and the ethion/biphenthrin-selected populations showed low mutiple-resistance level to biphenthrin and dicofol, respectively. However, the dicofol/cyhexatin-selected, the dicofol/biphenthrin-selected and the cyhexatin/biphenthrin-selected populations exhibited high multiple-resistance level to ethion.

  • PDF

A Study on the Process Conditions Optimization for Al-Cu Metal Line Corrosion Improvement (Al-Cu 금속 배선 부식 개선을 위한 공정조건 최적화에 관한 연구)

  • Mun, Seong Yeol;Kang, Seong Jun;Joung, Yang Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2525-2531
    • /
    • 2012
  • Al-Cu alloy has been used as a circuit material for its low resistance and ease to process for long years at CMOS technology. However, basically metal is very susceptible to corrosion and which has been a long pending trouble in various fields using metal. The defect causes the reliability concerns, so improved methods are necessary to reduce the defect. In the various corrosion parameters, PR strip process conditions after metal etch and optimal cleaning solutions are controllable and increase the process margin to prevent the metal corrosion. This study proposes that chlorine residue after metal etch as the source of metal corrosion, and charges should be removed by optimizing PR strip process condition and cleaning condition.

High-Temperature Corrosion Characterization for Super-Heater Tube under Coal and Biomass Co-firing Conditions (석탄-바이오매스 혼소에 따른 슈퍼히터 튜브 고온 부식 특성 연구)

  • Park, Seok-Kyun;Mock, Chin-Sung;Jung, Jin-Mu;Oh, Jong-Hyun;Choi, Seuk-Cheun
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.79-86
    • /
    • 2018
  • Many countries have conducted extensive studies for biomass co-firing to enhance the durability of reactor on high-temperature corrosion. However, due to the complicated mechanisms of biomass co-firing, there have been limitations in accurately determining the current state of corrosion and predicting the potential risk of corrosion of power plant. In order to solve this issue, this study introduced Lab-scale corrosion system to analyze the corrosion characteristics of the A213 T91 material under the biomass co-firing conditions. The corrosion status of the samples was characterized using SEM/EDS analysis and mass loss measurement according to various biomass co-firing conditions such as corrosion temperature, $SO_2$ concentration, and corrosion time. As a result, the corrosion severity of A213 T91 material was gradually increased with the increase of $SO_2$ concentration in the reactor. When $SO_2$ concentration was changed from 0 ppm to 500 ppm, both corrosion severity and oxide layer thickness were proportionally increased by 15% and 130%, respectively. The minimum corrosion was observed when the corrosion temperature was $450^{\circ}C$. As the temperature was increased up to $650^{\circ}C$, the faster corrosion behavior of A213 T91 was observed. A213 T91 was observed to be more severely corroded by the effect of chlorine, resulting in faster corrosion rate and thicker oxide layer. Interestingly, corrosion resistance of A213 T91 tended to gradually decrease rather than increases as the oxide layer was formed. The results of this study is expected to provide necessary research data on boiler corrosion in biomass co-firing power plants.

Interpretation of Permeation Characteristics and Membrane Transport Models Through Polyamide Reverse Osmosis Membrane (Polyamide 역삼투막의 투과성능과 막 이동 모델의 해석)

  • 김노원;김영길;이용택
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.75-84
    • /
    • 2004
  • In this study, we present a noble study far membrane transport models using chlorine resistance of polyamide RO membranes. Membrane transport mechanism is investigated by the comparison of membrane permeation performance under the continuous and Intermittent operation modes with mixed feed solution containing NaOCl and NaCl. Analysis of permeation performance indicates that solution-diffusion model and preferential adsorption-capillary flow model are relatively efficient according to operation mode. Under the continuous flow state, mass transfer depends on preferential adsorption-capillary flow model rather than solution-diffusion model. On the other hand, it prefers solution-diffusion model to preferential adsorption-capillary flow model under the stationary state. SEM images of NaOCl treated membrane surfaces strongly support these conclusions. These surface images reveal that NaOCl treated membrane in continuous operation mode exhibits ridge and valley structure in some fraction of the surface area, whereas that in intermittent operation mode shows surface degradation entirely.