• Title/Summary/Keyword: Chloride removal

Search Result 333, Processing Time 0.027 seconds

Influence of Plasma Treatment on Hydrogen Chloride Removal of Activated Carbon Fibers

  • Park, Soo-Jin;Kim, Byung-Joo;Ryu, Seung-Kon
    • Carbon letters
    • /
    • v.5 no.3
    • /
    • pp.103-107
    • /
    • 2004
  • The atmospheric pressure plasma treatments ($Ar/O_2$ and $Ar/N_2$) of activated carbon fibers (ACFs) were carried out to introduce hydrophilic functional groups on carbon surfaces in order to enhance the hydrogen chloride gas (HCl) adsorption. Surface properties of the ACFs were determined by XPS and SEM. $N_2$/77 K adsorption isotherms were investigated by BET and D-R (Dubinin-Radushkevich) plot methods. The HCl removal efficiency was confirmed by HCl detecting tubes (range:1~40 or 40~1000 ppm). As experimental results, it was found that all plasma-treated ACFs showed the decrease in the pore volume, but the HCl removal efficiency showed higher level than that of the untreated ACFs. This result indicated that the plasma treatments led to the conformation of hydrophilic functional groups on the carbon surfaces, resulting in the increase of the interaction between the ACFs and HCl gas.

  • PDF

Simultaneous Removal of Mercury and NO by Metal Chloride-loaded V2O5-WO3/TiO2-based SCR catalysts (금속염화물이 담지된 V2O5-WO3/TiO2 계 SCR 촉매에 의한 수은 및 NO 동시 제거)

  • Ham, Sung-Won
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.172-180
    • /
    • 2017
  • Thermodynamic evaluation indicates that nearly 100% conversion of elemental mercury to oxidized mercury can be attained by HCl of several tens of ppm level at the temperature window of SCR reaction. Cu-, Fe-, Mn-chloride loaded $V_2O_5-WO_3/TiO_2$ catalysts revealed good NO removal activity at the operating temperature window of SCR process. The catalysts with high desorption temperature indicating adsorption strength of $NH_3$ revealed higher NO removal activity. The HCl fed to the reaction gases promoted the oxidation of mercury. However, the activity for the oxidation of elemental mercury to oxidized mercury by HCl was suppressed by $NH_3$ inhibiting the adsorption of HCl to catalyst surface under SCR reaction condition containing $NH_3$ for NO removal. Metal chloride loaded $V_2O_5-WO_3/TiO_2$ catalysts showed much higher activity for mercury oxidation than $V_2O_5-WO_3/TiO_2$ catalyst without metal chloride under SCR reaction condition. This is primarily attributed to the participation of chloride in metal chloride on the catalyst surface promoting the oxidation of elemental mercury.

Removal of Phosphate by Using Wasted Sludge of Seafood Processing Factory (수산물 가공 폐슬러지를 이용한 인산염인 제거)

  • Choi, Bong-Jong;Lee, Seung-Mok;Kim, Keun-Han
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.23-28
    • /
    • 1999
  • Phosphate removal through adsorbent, such as activated alumina, powdered aluminum oxide, flyash, blasted furnace slag and other materials, is commonly and widely practiced. The purpose of this study was to improve the removal efficiency of phosphorus in waste sludge earned at seafood processing factories. To investigate the utility and the feasibility of this sludge disposal process, experiment was carried out with a batch process. As a result, phosphate removal appears to increase with increasing adsorbent does, but shows no changes at an adsorbent does over 5g/l. With increasing ratios of initial phosphate concentration to adsorbent does, the amount of removed phosphate is increased while phosphate removal(%) is decreased. Wasted sludge, treated with zinc chloride chemically, represented a better efficiency than the untreated activated sludge and zinc chloride itself, when they reacted with phosphate solution.

  • PDF

Chromate Removal from Wastewater using Micellar Enhanced Ultrafiltration and Activated Carbon Fibre Processes; Validation of Experiment with Mathematical Equations

  • Bade, Rabindra;Lee, Seung-Hwan
    • Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.98-104
    • /
    • 2008
  • In this study, chromate and cetylperidinium chloride (CPC) removal from artificial wastewater was monitored by using micellar enhanced ultrafiltration (MEUF) and activated carbon fibre (ACF) adsorption hybrid processes. For the efficient chromate removal, molar concentration of the CPC should be five times that of chromate and it should be at least one critical micelle concentration (CMC). The MEUF was found to be effective in the chromate removal while ACF in the CPC adsorption to produce chromate and CPC free effluents. The chromate and CPC removal was 99.8% from MEUF-ACF process. Effluent chromate concentration was exponentially correlated with molar ratio of CPC to chromate and pH.

Influencing Factors on NOM Removal using Blended Coagulants (혼합응집제에 의한 자연유기물질 제거에 미치는 영향 인자)

  • 명복태;우달식;최종헌;문철훈;이윤진;조영태;조관형;남상호
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.3
    • /
    • pp.96-103
    • /
    • 2001
  • This study was carried out to investigate the major factors for the removal of NOMs (Natural Organic Matters) by alum ferric chloride and blended coagulants that consisted of alum and ferric chloride. Investigated factors were pH, the dosage of coagulant, alkalinity, hardness and bloc strength. The particle size contained in the test water came from the Han River was also measured. DOC(Dissolved Organic Carbon) removal at pH 6 was two to three times higher than at pH 8.5. The blended coagulant showed 9 to 10 percent higher DOC removal efficiency and 2 to 4 percent higher turbidity under the same condition. Alkalinity consumption of alum, ferric chloride and blended coagulant was 81%, 90% and 86% of theoretical value, respectively. The limit concentration of alkalinity to avoid pin floe was 10 mg $CaCO_3/L$ when alum was used. Hardness had no apparent effect on coagulation. The residual turbidity and $UV_{254}$ showed a tendency of increasing with floc strength($sec^{-1}$) increase. The order of floe strength was the following; alum >blended coagulant > ferric chloride. The particle counter test showed 89 percent of the small particle size(SPS, $1~5{\;}{\mu}textrm{m}$) and 11 percent of the medium to large particle size(M.LPS, $5~125{\;}{\mu}textrm{m}$). At PH7.85, the particle removal efficiencies of SPS($1~5{\;}{\mu}textrm{m}$) and M.LPS($5~125{\;}{\mu}textrm{m}$) in the coagulation process were 81% and 95%, respectively.

  • PDF

Nitrate Removal by $FeCl_3$-Treated Activated Carbon (염화철 처리 활성탄에 의한 질산염 제거)

  • 정경훈;최형일;정오진
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.63-68
    • /
    • 2001
  • A laboratory experiment was performed to invstigate the nitrate removal using FeCl$_3$ -treated activated carbon. Iron chloride(III) was coated onto the surface of activated carbon. The removal efficiency of nitrate was increased with increasing of FeCl$_3$ was used for coating material. About 22~26mg of Fe per unit g of activated carbon was adsorbed. The nitrate removal was not affected by the pH under the experiment range of pH, but the pH value in solution decrease to 3.5~4.0 after reaction. The removal efficiency of nitrate was increased with increasing of dosage of adsorbents. Ammonia was not detected and the Fe concentration as low as 0.22mg/$\ell$ was desorbed from the adsorbents. The adsorbents was regenerated using KCl solution, and recovery was 76.6% at 1 M of KCl. The adsorption of nitrate by FeCl$_3$-treated activated carbon followed the Freundlich isotherm equation and the Freundlich constant, 1/n, was 0.346. These results showed that the FeCl$_3$-treated activated carbon could serve as the basis of a useful nitrate removal.

  • PDF

Removal of Residual Solvents in Paclitaxel by Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 Paclitaxel의 잔류용매 제거)

  • 김진현;박흥복;기은숙;강인선;최형균;홍승서
    • KSBB Journal
    • /
    • v.16 no.3
    • /
    • pp.233-236
    • /
    • 2001
  • Because of casehardenign effect of amorphous paclitaxel, residual solvents, methylene chloride and emthanol could not be reduced to the maximum value allowed, 600 ppm and 3,000 ppm, in accord with the guidelines issued by the International Conference on Harmonization (ICH, 1997), using rotary evaporation and successive drying in a vacuum oven. However, methylene chloride and methanol were reduced to 486 ppm and 403 ppm, respectively using supercritical $CO_2$ on purified paclitaxel. The optimum pressure and operating time were 80 bar and 30 min at fixed operating temperature ($40^{circ}C$). This approach serves as a novel application of supercritical fluid extraction to remove residual solvents from active pharmaceutical ingredients.

  • PDF

Separation Characteristics of Barium Ion in Water Using Capacitive Deionization (CDI) Process (축전식탈염(CDI) 공정을 이용한 수용액 중 바륨 이온 분리 특성 연구)

  • Nam, Dong Hyun;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.29 no.6
    • /
    • pp.355-361
    • /
    • 2019
  • We studied the removal of barium ions that may be contained in industrial wastewater using the existing capacitive deionization (CDI). The 30 mg/L BaCl2 (barium chloride dihydrate) solution was used as the feed solution, and the flow rate was set to 10 mL/min. The adsorption conditions were varied from 1.2 V to 3, 5 and 7 min, and the desorption conditions were -1, -1.5, -2 V and 1, 2 and 3 min, respectively, to select the most efficient conditions. As a result, barium ion removal efficiency of 64.4% was obtained under the adsorption conditions of adsorption of 1.2 V/7 min and the desorption -1 V/1 min. For the desorption voltages and time, under the same experimental conditions, the removal efficiency of CDI for 30 mg/L NaCl aqueous solution with the same concentration as barium showed 69.9% removal efficiency under the adsorption conditions of and the desorption conditions of 1.2 V/7 min desorption -1 V/1 min, respectively.

Optimal coagulant and its dosage for turbidity and total organic dissolved carbon removal (탁도와 총유기탄소 제거를 위한 최적응집제 및 투여량 선정 연구)

  • Park, Hanbai;Woo, Dal-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2321-2327
    • /
    • 2015
  • Three coagulants, alum sulfate(alum), poly aluminum chloride(PAC) and poly aluminum silicate chloride (PASC), were used to remove low to high turbidity and TOC in surface and ground blended water. Laboratory experiments and pilot plant experiments were carried out to evaluate the optimal coagulant and its dosage. To determine the optimized coagulant and its dosage, the turbidity, TOC and pH were measured. The experimental results showed the best removal performance using PASC. The optimal dosage of PASC between 3-20 NTU was found to be 15 mg/L in the jar test. In the pilot test, a 15 mg/L PASC dosage was applied and resulted in the efficient removal of turbidity and TOC between 3.6-27 NTU. The removal efficiency of PASC increased with increasing turbidity and TOC.

Effect of Salt Concentration on the Aerobic Biodegradability of Sea Food Wastewater (수산물 가공폐수의 호기성 생분해도에 미치는 염분농도의 영향)

  • Choi, Yong-Bum;Kwon, Jae-Hyouk;Rim, Jay-Myung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.256-263
    • /
    • 2010
  • The study was performed to evaluate the effects of chloride concentrations on the ultimate aerobic biodegradability and to use the result as the fundamental data for sea food wastewater treatment. When the organic removal efficiency by chloride concentrations (1,400~18,000 mg/L) was evaluated, microbes adapted to the saline at ${\leq}$ 6,000 mg/L of chloride but treatment efficiency was not improved at ${\geq}$ 12,000 mg/L of chloride because of delayed reaction time. Functional coefficient $Y_I$ of non-biodegradable soluble organic and inert material production coefficient Yp by microbe metabolism increased as chloride concentrations increased. Soluble organic matter ratio by chloride concentration (0~18,000 mg/L) was 10.8~13.1%, inert material production efficiency by microbes metabolism was evaluated as 7.0~24.6%. $NH_3$-N removal efficiencies were 96.2, 96.5, 90.2 and 90.3% using original wastewater HRT 18 hr, 6,000 mg/L chloride concentration HRT 22 hr, 12,000 mg/L chloride concentration HRT 30 hr, and 18,000 mg/L chloride concentration HRT 45 hr, respectively. Nitrification process was more sensitive to salt concentration than organic matter removal to salt concentration. Under ${\geq}$ 6,000 mg/L chloride concentration, conversion rate from $NO_s$-N to $NO_2$-N was low.