• Title/Summary/Keyword: Chloride attack

Search Result 317, Processing Time 0.023 seconds

A study on the distribution of airborne sea salt to the distance from seashore (해안으로부터 거리별 비래염분량의 분포에 대한 고찰)

  • Lee, Jong-Suk;Choi, Won-Sung;Moon, Han-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.842-845
    • /
    • 2004
  • When the concrete structures are in contact with seawater, concentration of chloride for estimating chloride diffusion coefficient can be defined as the chloride concentration of sea water. However, in case the concrete structures, constructed in the seashore, aren't directly in contact with seawater, it is difficult to establish the interface concentration of chloride. In addition, marine concrete structures are greatly affected by salt attack such as rebar corrosion, among the cause of salt attack, airborne sea salt is primary factor. Therefore, in this study, salt attack environment by airborne sea salt was investigated in terms of the distance from seashore at 33 spots, 6 areas in East, West, South coast for 1 year. Results indicated that airborne sea salt is decreased by $y=a{\cdot}x^{-b}$ equation to the distance from seashore.

  • PDF

Investigation on the Properties of Mortar U sing Chloride Attack Protection Agent (염해방지제 사용에 따른 모르타르의 특성 검토)

  • Bae, Jun-Young;Kim, Jong-Back;Lee, Keon-Ho;Cho, Sung-Hyun;Kim, Kyoung-Min;Park, Sang-Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.297-298
    • /
    • 2009
  • In this paper, it was to investigate different types of mortar properties using a chloride attack protection agent by evaluating mixing ratio of this particular agent, including 3% increments. The results showed that the compressive strength and chloride ion penetration resistance of mortar by using chloride attack protection agent were improved than non-added mortar.

  • PDF

An Experimental Study on Chloride Ions Penetration of Mortar containing Si/Al Hybrid-Inorganic Salt (Si/Al 복합 무기염을 적용한 모르타르의 염소이온침투깊이에 대한 실험적 연구)

  • Khil, Bae-Su;Kim, Do-Su;Kang, Yong-Sik;Kim, Woo-Jae;Choi, Se-Jin;Kim, Sung-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.417-418
    • /
    • 2009
  • As iron corrosion by means of penetration of chlorides resulted in a serious deterioration of seaside and landfill concrete construction, it is urgently necessary for seaside construction to acquire watertightness and resistance for chloride-attack. Hence in this study, Si/Al liquor type hybrid-inorganic salt which was very effective compound for improving resistance for chloride-attack applied to mortar and then evaluated resistance for chloride-attack with curing(7, 14, 28, 56 days).

  • PDF

A Study on the Chloride Attack Resistance of Marine Concrete by Accelerated Deterioration Test of Artificial Seawater (인공해수촉진열화시험에 의한 해양콘크리트의 내염특성에 관한 연구)

  • Lee, Jun;Seo, Jung-Pil;Cho, Sung-Hyun;Bae, Jun-Young;Park, Sang-Joon;Kim, Kyoung-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.357-358
    • /
    • 2010
  • This study was performed an evaluation of chloride attack resistance properties of marine concrete by accelerated deterioration test of artificial seawater. As the results of study, when considering the compressive strength and chloride ion penetration of concrete, the proper type to improvement of chloride attack resistance is thought to marine cement.

  • PDF

Kinetics and Mechanism of the Aminolysis of Diphenyl Phosphinic Chloride with Anilines

  • Ul Hoque, Md.Ehtesham;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.936-940
    • /
    • 2007
  • The aminolyses of diphenyl phosphinic chloride (1) with substituted anilines in acetonitrile at 55.0 oC are investigated kinetically. Large Hammett ρ X (ρnuc = ?4.78) and Bronsted β X (βnuc = 1.69) values suggest extensive bond formation in the transition state. The primary normal kinetic isotope effects (kH/kD = 1.42-1.82) involving deuterated aniline (XC6H4ND2) nucleophiles indicate that hydrogen bonding results in partial deprotonation of the aniline nucleophile in the rate-limiting step. The faster rate of diphenyl phosphinic chloride (1) than diphenyl chlorophosphate (2) is rationalized by the large proportion of a frontside attack in the reaction of 1. These results are consistent with a concerted mechanism involving a partial frontside nucleophilic attack through a hydrogen-bonded, four-center type transition state.

Distribution properties of seasonal airborne sea salt in the seashore (해안가의 계절별 비래염분량의 분포 특성)

  • Lee, Jong-Suk;Choi, Won-Sung;Moon, Han-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.237-240
    • /
    • 2004
  • When the concrete structures are in contact with seawater, concentration of chloride for estimating chloride diffusion coefficient can be defined as the chloride concentration of sea water. However, in case the concrete structures, constructed in the seashore, aren't directly in contact with seawater, it is difficult to establish the interface concentration of chloride. In addition, marine concrete structures are greatly affected by salt attack such as rebar corrosion, among the cause of salt attack, airborne sea salt is primary factor. Therefore, in this study, salt attack environment by airborne sea salt was investigated in terms of a seasonal distribution at 33 spots, 6 areas in the East, West, South coast for 1 year. Results indicated that in the South coast, the amount of the airborne sea salt is comparatively higher in summer. in the West coast. higher in winter. On the other hand, in the East coast, the amount of the airborne sea salt is rarely affected by a season.

  • PDF

An Evaluation of Reinforced Concrete Durability in Chloride Attack Environment under Sustained Load (염해 환경하에서 지속하중을 받는 철근콘크리트 부재의 내구성 평가)

  • Hong, Jun-Seo;Im, Chang-Hun;Yoon, Sang-Chun;Jee, Nam-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1045-1050
    • /
    • 2001
  • This study was performed to evaluate reinforced concrete durability in chloride attack environment under sustained load by the corrosion of reinforcing bars and the permeation of chloride ion. Generally, it is regarded that permeability of chloride ion is determined by the properties of concrete, but the effects of load which make alternation of concrete inner structure such as crack and so on should not neglected. In this study, it is shown that the relation between bending load on RC beam, deflection and crack of specimen, permeation of chloride ion, rating of re-bar corrosion, and the relation between compression load and permeation of chloride ion. Therefore the effects of load on permeation of chloride ion and re-bar corrosion are evaluated.

  • PDF

Long-Term Durability Estimation of Cementless Concrete Based on Alkali Activated Slag (알칼리 활성 슬래그 기반 무시멘트 콘크리트의 장기 내구성 평가)

  • Lee, Hyun-Jin;Lee, Seok-Jin;Bae, Su-Ho;Kwon, Soon-Oh;Lee, Kwang-Myong;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.149-156
    • /
    • 2016
  • It has been well known that concrete structures exposed to chloride and sulfate attack environments lead to significant deterioration in their durability due to chloride ion and sulfate ion attack. The purpose of this experimental research is to evaluate the long-term durability against chloride ion and sulfate attack of the alkali activated cementless concrete replacing the cement with ground granulated blast furnace slag. For this purpose, the cementless concrete specimens were made for water-binder ratios of 40%, 45%, and 50%, respectively and then this specimens were cured in the water of $20{\pm}3^{\circ}C$ and immersed in fresh water, 10% sodium sulfate solution for 28, 91, 182, and 365 days, respectively. To evaluate the long-term durability to chloride ion and sulfate attack for the cementless concrete specimens, the diffusion coefficient for chloride ion and compressive strength ratio, mass change ratio, and length change ratio were measured according to the NT BUILD 492 and JSTM C 7401, respectively. It was observed from the test results that the resistance against chloride ion and sulfate attack of the cemetntless concrete were comparatively largely increased than those of OPC concrete irrespective of water-binder ratio.

An Evaluation on the Field Application and Resistance for the Shrinkage-Chloride Attack of Concrete containing High Durability Additivee (내구성개선제를 적용한 콘크리트의 수축-염해저항성 및 현장 적용특성 평가)

  • Kim, Do-Su;Khil, Bae-Su;Kim, Woo-Jae;Kim, Sung-Su;Jung, Yong;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.733-736
    • /
    • 2008
  • In this study, we developed durability promoting chemical agent(HD) that simultaneously improved resistance for chloride attack and shrinkage of concrete. This agent as typed aqueous solution containing organic and inorganic compounds applied to concrete mix(Bx0.6%, 1.2%) of seaside construction using SLG and then evaluated the effect on the shrinkage and chloride attack of concrete. By the addition of HD, it was elucidated that resistance for chloride attack and shrinkage were improved above 50% and 33% respectively than non-added concrete(Plain). This performance was confirmed through the Field-test applied HD(Bx0.6%) such as RCD construction.

  • PDF

Durability Life Prediction of Concrete Subjected to Freezing-Thawing and Chloride Attack (동결융해와 염해에 따른 복합열화를 고려한 콘크리트의 내구수명 예측)

  • Hwang, Hyo-Jae;Park, Dong-Cheon;Oh, Sang-Gyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.97-101
    • /
    • 2008
  • As the number of concrete building structures in marine environment increases, it is important to study and predict the durability and the compound deterioration of the concrete which is exposed in both chloride and freezing-thawing damage. The concrete's resistance against freezing and thawing is tested based on KS F 2456, while its chloride ion diffusion coefficient is evaluated based on NT BUILD 492. In result, the more exposure to freezing and thawing process, the shorter life it gets, due to the increased amount of chloride ion diffusion coefficient.

  • PDF