• Title/Summary/Keyword: Chloride Solution

Search Result 1,411, Processing Time 0.023 seconds

Selective transport of Cadmium by PVC/Aliquat 336 polymer inclusion membranes (PIMs): the role of membrane composition and solution chemistry

  • Adelung, Sandra;Lohrengel, Burkhard;Nghiem, Long Duc
    • Membrane and Water Treatment
    • /
    • v.3 no.2
    • /
    • pp.123-131
    • /
    • 2012
  • This study investigated the extraction and stripping performance of PIMs consisting of PVC and Aliquat 336. Extraction and stripping of three representative heavy metals - namely $Cd^{2+}$, $Cu^{2+}$, and $Zn^{2+}$ - by the synthesized membranes were evaluated as a function of sodium chloride concentration and under different stripping solutions (0.01 M $HNO_3$, Milli-Q water, 0.01 M HCl and 0.01 M NaOH), respectively. Results reported here indicate that the formation of negatively charged metal chloride complex species was responsible for the extraction of the target metal to PIMs. Experimental results and thermodynamic modeling of the speciation of chloro metal complexes further confirm that the extraction selectivity between $Cd^{2+}$, $Cu^{2+}$ and $Zn^{2+}$ can be controlled by regulating the chloride concentration of the feed solution. An acidic solution without any chloride was the most effective stripping solution, followed by Milli-Q water, and a diluted hydrochloric acid solution. On the other hand, the stripping of metals from PIMs did not occur when a basic stripping solution was used.

Study of Chloride Corrosion Organic Inhibitors in Alkaline Pore Solution

  • Cabrini, M.;Lorenzi, S.;Pastore, T.;Pellegrini, S.
    • Corrosion Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.203-210
    • /
    • 2018
  • This paper compares the inhibition properties of aspartic and lactic acid salts with nitrite ions and their effect on critical chloride concentration. The tests were carried employing carbon steel specimens in saturated lime solution with varying pH in the range between13 to 13.6. The critical chloride concentration was estimated through multiple specimen potentiostatic tests at potentials in the usual range for passive rebar in the alkaline concrete of atmospheric structures. During tests, chloride salt was added every 48 h until all the specimens showed localized attacks. The cumulative distribution curves, i.e. the number of corroded specimens as a function of the chlorides concentration was obtained. Furthermore, IR spectra were recorded for the evaluation of the presence of the organic inhibitors on the passivity film. The results confirmed the inhibitory effect of 0.1M aspartate comparable with nitrite ions, at a similar concentration. Addition of calcium lactate did not result in an increase in the critical chloride concentration. However, the formation of a massive scale containing the substance that could reduce the corrosion propagation was observed.

Study on the Prevention of Spinach Softening Using Calcium Chloride (염화칼슘을 이용한 시금치의 연화방지 연구)

  • Huang, Ying;Kim, Sen Jin
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • The purpose of this study was to prevent excessive softening of seasoned spinach by heating and freezing through the pre-heating treatment in calcium chloride solution. The pre-heating temperature was set at 60℃, which supports the highest activity of pectinesterase around 60℃. Pre-heating spinach in calcium solution does not affect the chromaticity characteristics of spinach leaves and significantly improves its texture compared to conventional blanching only and pre-heating in water. The improvement of the firmness is related to the formation of strongly cross-linkages between carboxyl groups and Ca2+ by the action of the pectinesterase in spinach. For reheated spinach, the firmness of calcium chloride treated stems were 37.80~44.44 kg, and the control was 28.73 kg. The firmness of calcium chloride treated leaves was 19.73~40.79 kg, and the control was 9.63 kg. Additionally, the total aerobic bacteria in the fresh samples were 3.25~3.99 log CFU/g and 1.97~2.72 log CFU/g in the reheated samples. And the total coliform was not detected in the reheated samples. Considering the color, texture, microbial characteristics and taste quality, the optimum pre-treatment conditions to prevent excessive softening of spinach were 3% calcium chloride solution and 15minutes of treatment.

Experimental Investigation of Chloride Ion Penetration and Reinforcement Corrosion in Reinforced Concrete Member

  • Al Mamun, Md. Abdullah;Islam, Md. Shafiqul
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.1
    • /
    • pp.26-29
    • /
    • 2017
  • This paper represents the experimental investigation of chloride penetration into plain concretes and reinforced concretes. The main objective of this work is to study the main influencing parameters affecting corrosion of steel in concrete. Plain cement concrete and reinforced cement concrete with different water-cement ratios and different cover depth were subjected to ponding test. Ponding of specimens were done for different periods into 10% NaCl solution. Depth of penetration of chloride solution into specimens was measured after ponding. Specimens were crushed and reinforcements were washed using $HNO_3$ solution and weight loss due to corrosion was calculated accordingly. There was a linear relationship between depth of penetration and water-cement ratio. It was also observed that, corrosion of reinforcing steel increases with chloride ponding period and with water-cement ratio. Corrosion of steel in concrete can be minimized by providing good quality concrete and sufficient concrete cover over the reinforcing bars. Water-cement ratio has to be low enough to slow down the penetration of chloride salts into concrete.

The Characteristics of Chloride Fixation in Non-Sintering Cement Matrix (비소성 시멘트 경화체내 염화물 고정화 특성)

  • Mun, Kyoung-Ju;Hyoung, Won-Kil;Park, Won-Chun;So, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.725-728
    • /
    • 2006
  • This research investigates the characteristics of chloride fixation in non-sintering cement(NSC) matrix. NSC was manufactured by adding phosphogypsum and slack lime to granulated blast furnace slag as sulfate and alkali activators. As a result, the concentration of chloride ion in pore solution of NSC-solidified matrix is more low than that of OPC-solidified matrix containing the same chloride content in cement paste. Also, the concentration of chloride ion in pore solution of NSC-solidified matrix is similar with that of BSC-solidified matrix containing the same chloride content in cement paste.

  • PDF

Preparation of Alum and Poly Aluminum Chloride Using Waste Aluminum Dross (알루미늄 폐드로스를 재활용(再活用)한 Alum과 Poly Aluminum Chloride 제조(製造) 연구(硏究))

  • Park, Hyung-Kyu;Lee, Hoo-In;Choi, Young-Yoon
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.3-7
    • /
    • 2007
  • Waste aluminum dross was processed to prepare alum with sulfuric acid, and poly aluminum chloride(PAC) with hydrochloric acid. Metallic aluminum remained in the waste dross was dissolved into the sulfuric acid solution, and the solution could be used as alum for water treatment chemicals after adjusting the required alumina concentration and pH of the solution. Also, it was dissolved into the hydrochloric acid solution and processed to make PAC solution. Compared with the conventional method for preparation of alum and PAC using aluminum hydroxide, material cost could be saved in this method. Also, there is an additional merit in view of recycling of the waste aluminum dross by reducing the amount of waste disposed to landfill.

Control of Galvanic Corrosion Between A516Gr.55 Steel and AA7075T6 Depending on NaCl Concentration and Solution Temperature

  • Hur, S.Y.;Jeon, J.M.;Kim, K.T.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.281-287
    • /
    • 2020
  • Chloride ion is one of the most important corrosive agents in atmospheric corrosion, especially in marine environments. It has high adsorption rate and increases the conductivity of electrolytes. Since chloride ions affect the protective properties and the surface composition of the corrosion product, they increase the corrosion rate. A low level of chloride ions leads to uniform corrosion, whereas a high level of chloride ions may induce localized corrosion. However, higher solution temperatures tend to increase the corrosion rate by enhancing the migration of oxygen in the solution. This work focused on the effect of NaCl concentration and temperature on galvanic corrosion between A516Gr.55 carbon steel and AA7075T6 aluminum alloys. When AA7075T6 aluminum alloy was galvanically coupled to A516Gr.55 carbon steel, AA7075T6 was severely corroded regardless of NaCl concentration and solution temperature, unlike the corrosion properties of single specimen. The combined effect of surface treatment involving carbon steel and aluminum alloy on corrosion behavior was also discussed.

Synthesis of Uniform Cu Particles from Copper Chloride Solution (염화동 수용액으로부터 Cu 미립자의 합성)

  • Yoon Ji-hee;Kwon Hyun-Woo;Yu Yeon-tae;Kim Byoung-Gyu;Kim Gwang-soo
    • Korean Journal of Materials Research
    • /
    • v.15 no.4
    • /
    • pp.263-270
    • /
    • 2005
  • In order to prepare the uniform copper particles from copper chloride solution, the reduction behavior of copper particles from copper chloride and the effects of reduction agent and dispersing agent was investigated. In the case that 2.56 M of $C_6H_8O_6$ was used as a reduction agent, the highly dispersed Cu particles with sharp size distribution were generated from 0.96M of copper chloride solution, and the size of Cu particles was $6\~10\;{\mu}m$. To form $Cu(NH_3)_4Cl_2$ complex solution, $NH_4OH$ was added in the copper chloride solution before the reductive reaction of Cu ion. The generated Cu particles have a two kind of shape, spherical and rod-like. In the case that $N_2H_4{\cdot}H_2O$ was used as a reduction agent, the very fine spherical Cu particles with the size of $0.2\~0.5\;{\mu}m$ was obtained. Arabic gum as a dispersing agent was more effective than $Na_4P_2O_7{\cdot}10H_2O$.

A Study on Corrosion Failure of a Weathering Steel Weldment with Various Applied Potentials in Acid-chloride Solution (산-염소이온 분위기의 인자전위에 따른 내후성강 용접부의 부식파괴에 관한 연구)

  • 최윤석;김정구;김종집;이병훈
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.97-105
    • /
    • 2000
  • The stress corrosion cracking(SCC) and hydrogen embrittlement cracking(HEC) characteristics of a weathering steel weldment were investigated in aerated acid-chloride solution. The electrochemical properties of weldment were investigated by polarization test and galvanic corrosion test. Weathering steel did not show passive behavior in the acid-chloride solution. Galvanic corrosion between the weld metal and the base metal was not observed because the base metal was anodic to the weld metal. The slow-strain-rate tests(SSRT0 were conducted at a constant strain rate o 7.87×{TEX}$10^{-7}${/TEX}/s at corrosion potential, and at potentiostatically controlled anodic and cathodic potentials. The weldment of weathering steel was susceptible to both anodic dissolution SCC and hydrogen evolution HEC.

  • PDF

Investigation on Electrochemical Characteristics of Battery Housing Material for Electric Vehicles in Solution Simulating an Acid Rain Environment with Chloride Concentrations (산성비 환경을 모사한 수용액에서 염화물 농도에 따른 전기자동차 배터리 하우징용 재료의 전기화학적 특성 연구)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.147-157
    • /
    • 2022
  • Electrochemical characteristics and damage behavior of 6061-T6 aluminum alloy used as a battery housing material for electric vehicles were investigated in solution simulating the acid rain environment with chloride concentrations. Potentiodynamic polarization test was performed to analyze electrochemical characteristics. Damage behavior was analyzed through Tafel analysis, measurement of damage area, weight loss, and surface observation. Results described that corrosion current density was increased rapidly when chloride concentration excceded 600 PPM, and it was increased about 7.7 times in the case of 1000 PPM compared with 0 PPM. Potentiodynamic polarization experiment revealed that corrosion damage area and mass loss of specimen increased with chloride concentrations. When chloride concentration was further increased, the corrosion damage area extended to the entire surface. To determine damage tendency of pitting corrosion according to chloride concentration, the ratio of damage depth to width was calculated. It was found that the damage tendency decreased with chloride concentrations. Thus, 6061-T6 aluminum alloy damage becomes larger in the width direction than in the depth direction when a small amount of chloride is contained in an acid rain environment.