• Title/Summary/Keyword: Chloride Ion Diffusion

Search Result 204, Processing Time 0.02 seconds

A study on the Effect of Curing time on the Chloride ion Diffusion Coefficient in Concrete with Portland Cement and Ground Granulated blast-furnace slag (고로슬래그미분말 혼입 콘크리트의 양생재령이 염소이온 확산계수에 미치는 영향에 관한 연구)

  • Lee, Woo-Jin;Lee, Han-Seung;Song, Soo-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.249-252
    • /
    • 2004
  • Chloride ion diffusion is the most important thing of occuring deterioration in RC structure. According to establish data, the curing time in concrete reduce the chloride ion diffusion coefficient. The purpose of this study is to make clear through experience on the effect of curing time on the chloride ion diffusion coefficient in concrete with Portland cement and ground granulated blast-furnance slag and a propose the standard of chloride ion diffusion coefficient in concrete.

  • PDF

Electrochemical Acceletated Test for Evaluation of Chloride Diffusion in Concrete (콘크리트 중의 염화물 확산평가를 위한 전기화학적 촉진시험법)

  • 문한영;김홍삼;이승태;정호섭;최두선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.409-412
    • /
    • 2000
  • Many researchers have been trying to evaluate the diffusion coefficient of chloride ion in concrete by using qualitative and quantitative electro-migration tests. Up to now, however, there has been no sufficient method to closely determine the diffusion coefficient of chloride ion through electro-migration test. In this paper, the diffusion coefficient of chloride ion in concrete was investigated through an electro-migration test, that is, AASHTO T 277, Dhir's method, Tang's method and Andrade's method. And the results of these test were compared with each other.

  • PDF

The Evaluation of Chloride ion Diffusion in Concrete Containing Mineral Admixtures by Electrically Accelerated Test (전기촉진시험에 의한 광물질 혼화재를 혼입한 콘크리트의 염소이온 확산성능 평가에 관한 연구)

  • 김영진;이상수;김동석;유재강;김민중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.299-304
    • /
    • 2002
  • This research was to investigate the invasion and diffusion properties of chloride ion on the concrete containing mineral admixtures by the electrically accelerated test. Mineral admixtures selected in mixes were fly-ash, ground granulated blast-furnace slag, silica fume, and meta-kaolin with 3 degrees of replacement ratios. Tang and Nilsson's test method was used to estimate chloride diffusion coefficients of that mixes. As a result, the total current passing charge and the diffusion coefficient of chloride ion were reduced with the use of mineral admixtures and the increase of replacement ratios. In addition, compressive strength was related with diffusion coefficient of chloride ion. Diffusion coefficients of concrete mixed with ground granulated blast-furnace slag showed relatively low value under the range of compressive strength of 400㎏f/㎠.

  • PDF

A Study on the Chloride Ion Diffusion Coefficient of Concrete by Submergence in Salt Water (침적시험에 의한 콘크리트의 염소이온 확산계수 평가)

  • 김동석;양승규;정연식;유재상;이종열;본간건일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.297-300
    • /
    • 2003
  • A chloride is an important deteriorating factor which governs the durability of the reinforced-concrete structures under marine environments. Also, the main penetration mechanism of chloride ion into concrete is a diffusion phenomenon. In this study, It is evaluated the diffusion coefficient of chloride ion in non-steady state by Fick's second law. Submergence method in salt water carried out in this experiment. Two types of cement which is different in mineral composition were used. In addition, the effect of mineral admixtures of blast-furnace slag and meta-kaolin was studied. In conclusion, the diffusion coefficient of chloride ion is much affected according to cement type and mineral admixtures, also, it is proved that meta-kaolin as well as blast-furnace slag is effective in preventing penetration of chloride ion.

  • PDF

Estimation of Probability Valuable for Diffusion Coefficient of Chloride Ion (염소이온 확산계수의 확률변수 평가)

  • Bae Su Ho;Lee Kwang Myong;Kim Jee Sang;Jung Sang Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.515-518
    • /
    • 2005
  • In recent years, many research works have been carried out in order to obtain a more controlled durability and long-term performance of concrete structures exposed to chloride environments. In particular, the development of new procedures for probability-based durability analysis and design has been proved to be very valuable. To carry out the procedures described above, the statistical properties of design valuables such as diffusion coefficient of chloride ion, surface chloride concentration, and chloride threshold value etc. should be known. For this purpose, this paper presents the statistical properties of the diffusion coefficient of chloride ion such as mean value and standard deviation with water-cement(w/c) ratio and curing conditions, respectively. It was observed from the test that the standard deviation for the diffusion coefficient of chloride ion was found to be small with decrease in the w/c ratio irrespective of curing conditions and that of standard curing was found to be smaller than that of field curing.

  • PDF

The properties of chloride ion diffusion in concrete with Fly-ash (플라이애쉬를 혼입한 콘크리트의 염화물 확산특성)

  • 박정준;고경택;김도겸;김성욱;하진규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.207-212
    • /
    • 2002
  • Reportedly, the use of mineral admixtures make concrete more durable and tighten against water. But, it is needed to study more about the relationship between the admixtures and the chloride ion diffusion. When concrete is mixed with fly-ash, pozzolanic reaction occur to time. So we should consider the factors that can evaluate inner structure of concrete in order to evaluate the chloride diffusion of the concrete more accurately. Therefore, in this study, we analyzed the correlation between chloride ion diffusion and physical properties such as compressive strength, void ratio, air permeability of the concrete, and tried to use them as fundamental data for analyzing chloride ion diffusion mechanism of the concrete mixed with fly-ash.

  • PDF

Analysis Technique for Chloride Behavior Using Apparent Diffusion Coefficient of Chloride Ion from Neural Network Algorithm (신경망 이론을 이용한 염소이온 겉보기 확산계수 추정 및 이를 이용한 염화물 해석)

  • Lee, Hack-Soo;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.481-490
    • /
    • 2012
  • Evaluation of chloride penetration is very important, because induced chloride ion causes corrosion in embedded steel. Diffusion coefficient obtained from rapid chloride penetration test is currently used, however this method cannot provide a correct prediction of chloride content since it shows only ion migration velocity in electrical field. Apparent diffusion coefficient of chloride ion based on simple Fick's Law can provide a total chloride penetration magnitude to engineers. This study proposes an analysis technique to predict chloride penetration using apparent diffusion coefficient of chloride ion from neural network (NN) algorithm and time-dependent diffusion phenomena. For this work, thirty mix proportions with the related diffusion coefficients are studied. The components of mix proportions such as w/b ratio, unit content of cement, slag, fly ash, silica fume, and fine/coarse aggregate are selected as neurons, then learning for apparent diffusion coefficient is trained. Considering time-dependent diffusion coefficient based on Fick's Law, the technique for chloride penetration analysis is proposed. The applicability of the technique is verified through test results from short, long term submerged test, and field investigations. The proposed technique can be improved through NN learning-training based on the acquisition of various mix proportions and the related diffusion coefficients of chloride ion.

A Chloride Ion Diffusion Model in Blast Furnace Slag Concrete (고로슬래그 미분말 콘크리트의 염화물이온 확산모델)

  • 이석원;박상순;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.467-472
    • /
    • 2000
  • It is known that chloride ion in concrete destroys the passive film of reinforcement inside concrete and accelerates corrosion which is the most influencing factor to durability of concrete structures. In this thesis, a chloride ion diffusion model for blast furnace slag(BFS) concrete, which has better resistance to both damage due to salt and chloride ion penetration than ordinary portland cement concrete, is proposed by modifying existing model of normal concrete. Proposed model is verified by comparing diffusion analysis results with both results by indoor chloride penetration test for specimens and field test results for actual RC bridge pier. Also, the optimum resistance condition to chloride penetration is obtained according to degrees of fineness and replacement ratios of BFS concrete. As a result, resistance to chloride ion penetration for BFS concrete is more affected by replacement ratio than degree of fineness.

  • PDF

Characteristic of Chloride Ion Diffusion in Concrete Containing GGBF (고로슬래그미분말 혼합 콘크리트의 염소이온 확산특성)

  • 문한영;김홍삼;김진철;최두선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.793-796
    • /
    • 2001
  • Physical properties of concrete, Such as, compressive strength, permeable pore and penetration depth of chloride ion were investigated. And to investigate the effect of containing GGBF in concrete, the diffusion coefficient of chloride was measured through an electro- migration test. The diffusion coefficient of chloride was decreased with increase of replacement ratios of GGBF when compared to OPC. Relation coefficients between physical properties of concrete and diffusion coefficient of chloride were more than 0.9.

  • PDF

Evaluation of the Durability at RC Structure with Surface Finishing Materials using FEM Analysis. (FEM 해석을 통한 표면마감재 시공 RC 구조물의 내구성 평가)

  • Lee, Seong-Min;Lee, Han-Seoung;Kim, Dong-Seok;Lee, Woo-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.269-272
    • /
    • 2006
  • Chloride ion diffusion is the most important thing of occuring deterioration in RC structure. So it is important to decide the precise chloride ion diffusion coefficient in order to predict the durability life in RC structure. The purpose of this study is to analyze the established data, which are restricted by chloride diffusion coefficient, and to calculate chloride ion diffusion coefficient using RCPT test. To examine the prediction of the concrete structure durability by an FEM analysis and the chloride diffusion coefficient as a variable. Each surface finishing materials were effective on the increment of chloride penetration resistance, but showed a little different effect depending on the type of surface finishing material.

  • PDF