• Title/Summary/Keyword: Chloride Ion

Search Result 1,125, Processing Time 0.027 seconds

EFFECT OF METHANOL EXTRACT OF CNIDII RHIZOMA ON THE FUNCTION OF RECEPTORS FOR GABA AND GLYCINE (천궁(Cnidii Rhizoma)의 메탄올 추출물이 GABA 및 Glycine 수용체에 미치는 영향)

  • Lee, Jong-Tae;Lee, Keung-Ho;Park, Jae-Hong
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.1
    • /
    • pp.55-66
    • /
    • 2005
  • Cnidii Rhizoma (CR) was subjected to extraction with 70% methanol and tested to determine whether it has anxiolytic activity in mouse by employing staircase and rotarod tests. In addition, to understand the mechanism of anxiolytic action, CR, picrotoxin, yohimbine, isoniazid and strychnine were utilized to deliniate the potential involvement of GABA and glycine receptors in the action of Cnidii Rhizoma. To gain insights into the safety of Cnidii Rhizoma extract, behavioral and MTT tests were carried out. The results were obtained as follows: 1. CR extract had little effect on climbing numbers in the stair case test. 2. CR extract had considerable anti-anxiety effects as evidenced by the reduction of rearing numbers in the stair case test. 3. CR extract had little effect on muscle relaxation. 4. Anxiolytic actions of CR extract appeared to be mediated by glycine receptor activation. 5. Cytotoxicity in the neuronal cell was not observed and no strange behaviors were found. In short, these results indicate that CR extract has the ability to exert anxiolytic activity, possibly by activating glycine receptor with little side effects in mouse.

  • PDF

Durability of Polymer-Modified Mortars Using Acrylic Latexes with Methyl Methacrylate (MMA계 아크릴 라텍스를 혼입한 폴리머시멘트 모르타르의 내구성)

  • Hyung Won-Gil;Kim Wan-Ki;Soh Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.411-418
    • /
    • 2005
  • Polymer-modified mortar and concrete are prepared by mixing either a polymer or monomer in a dispersed, or liquid form with fresh cement mortar and concrete mixtures, and subsequently curing, and if necessary, the monomer contained in the mortar or concrete is polymerized in situ. Although polymers and monomers in any form such as latexes, water-soluble polymers, liquid resins, and monomers are used in cement composites such as mortar and concrete, it is very important that both cement hydration and polymer phase formation proceed well the yield a monolithic matrix phase with a network structure in which the hydrated cement phase and polymer phase interpenetrate. In the polymer-modified mortar and concrete structures, aggregates are bound by such a co-matrix phase, resulting in the superior properties of polymer-modified mortar and concrete compared to conventional mortar and concrete. The purpose of this study is to obtain the necessary basic data to develope appropriate latexes as cement modifiers, and to clarify the effects of the monomer ratios and amount of emulsifier on the properties of the polymer-modified mortars using methyl methacrylate-butyl acrylate(MMA/BA) and methyl methacrylate-ethyl acrylate(MMA/EA) latexes. The results of this study are as follows, the water absorption, chloride ion penetration depth and carbonation depth of MMA/BA-modified mortar are lowest. However, they are greatly affected by the polymer-cement ratio rather than the bound MMA content and type of polymer.

Limnological Characteristics of the River-type Paltang Reservoir, Korea: Hydrological and Environmental Factors (하천형 저수지 팔당호의 육수학적 특성:수문과 수환경 요인)

  • Shin, Jae-Ki;Kang, Chang-Keun;Kim, Ho-Sub;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.242-256
    • /
    • 2003
  • This study aimed to determine the relationship between rainfall-discharge patterns and maior aquatic environmental factors in a river-type reservoir. Specifically, daily monitoring was conducted in Paltang Reservoir from January 1999 to December 2001. Observation of the daily changes of the environment factors showed that natural meteorological factors and hydrological factors causing the change of water discharge had a major effect on the aquatic environment. Rainfall was the main source of hydrological changes, with its frequency a possible direct variable governing the range of discharge changes. Rainfall was weak in November${\sim}$May and heavy in June${\sim}$October (heavist in summer). The range of water discharge was greatest during summer (July to September) and lowest during winter (January to February). A principal component analysis (PCA) showed that aquatic environmental factors could be classified into three different types in the pattern of annual variation. First, type I included water temperature, turbidity, water color and organic matter (COD), which increased with increasing water discharge. Second, type ll consisted of DO and pH, which decreased with increasing water discharge. Third, type III included conductivity, alkalinity and chloride ion, which showed middle values with increasing water discharge. Monthly variation of aquatic environments explained by the first two dimensions of the PCA suggests that aquatic environments of Paltang Reservoir may have annual cycle typical of river-type reservoirs depending on hydrological factor such as water discharge.

Preparation of diffusion dialysis membrane for acid recovery via a phase-inversion method

  • Khan, Muhammad Imran;Wu, Liang;Hossain, Md. Masem;Pan, Jiefeng;Ran, Jin;Mondal, Abhishek N.;Xu, Tongwen
    • Membrane and Water Treatment
    • /
    • v.6 no.5
    • /
    • pp.365-378
    • /
    • 2015
  • Herein, the preparation of anion exchange membrane (AEM) from brominated poly(2,6-dimethyl 1,6-phenylene oxide) BPPO and dimethylaniline (DMA) by phase-inversion process is reported. Anion exchange membranes (AEMs) are prepared by varying the DMA contents. Prepared AEMs show high thermal stability, water uptake (WR) around 202% to 226%, dimensional change ratios of 1.5% to 2.6% and ion exchange capacities (IECs) of 0.34 mmol/g to 0.82 mmol/g with contact angle of $59.18^{\circ}$ to $65.15^{\circ}$. These membranes are porous in nature as confirmed by SEM observation. The porous property of membranes are important as it could reduce the resistance of transportation of ions across the membranes. They have been used in diffusion dialysis (DD) process for recovery of hydrochloric acid (HCl) from the mixture of HCl and ferrous chloride ($FeCl_2$). Presence of $-N+(CH_3)_2C_6H_5Br^-$ as a functional group in membrane matrix facilitates its applications in DD process. The dialysis coefficients of hydrochloric acid ($U_H$) of the membranes are in range of 0.0016 m/h to 0.14 m/h and the separation factors (S) are in range of 2.09 to 7.32 in the $HCl/FeCl_2$ system at room temperature. The porous membrane structure and presence of amine functional group are responsible for the mechanism of diffusion dialysis (DD).

Properties of Polymer-Modified Mortars Using Methylmethacrylate-Butyl Acrylate Latexes with Various Monomer Ratios (모노머비를 변화한 MMA/BA 합성 라텍스 혼입 폴리머 시멘트 모르타르의 성질)

  • Hyung, Won-Gil;Kim, Wan-Ki;Choi, Nak-Woon;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.273-279
    • /
    • 2003
  • The purpose of this study is to clarify the effect of the monomer ratio on properties of the polymer-modified mortars using methylmethacrylate-butyl acrylate(MMA/BA) latexes, and to obtain basic data necessary to develop appropriate latexes for cement modifiers. From the test results, we knew that the pore volume of polymer-modified mortars using MMA/BA latexes at bound MMA contents of 60 and 70 percent is 7.5∼75nm and the fine pore volume is increased with an increase in the polymer-cement ratio. The total pore volume of polymer-modified mortars using MMA/BA latexes is linearly reduced with an increase in the bound MMA content and increased in the polymer-cement ratio. In general, the superior compressive strength of polymer-modified mortars using MMA/BA latexes is obtained at a bound MMA content of 70 percent and a polymer-cement ratio of 15%. And, the water absorption and chloride ion penetration depth are greatly affected by the polymer-cement ratio rather than the bound MMA content. The important factors affecting the properties of polymer-modified mortars using MMA/BA latexes polymerized with various monomer ratios are the variations of the pore size distribution with changing bound MMA content and the polymer-cement ratio.

DNA-Independent ATPase Activity of Deinococcus radiodurans RecA Protein Is Activated by High Salt (고농도 염에 의한 Deinococcus radiodurans RecA 단백질의 DNA 비의존성 ATPase 역가의 활성화)

  • Kim, Jong-Il
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.313-318
    • /
    • 2010
  • Deinococcus radiodurans RecA protein, when bound to DNA, exhibits a DNA-dependent ATPase. In the absence of DNA, the rate of RecA protein-promoted ATP hydrolysis drops 1,000-fold under the physiological concentrations of salt. This DNA-independent activity can be stimulated to levels approximating those observed with DNA by adding high concentrations (approximately 1.6 M) of a wide variety of salts. This effect was characterized by varying salt concentration and comparing the effects of different ion types. The higher concentrations of salt stimulated the ATP hydrolysis by RecA protein in the absence of DNA. At 1.6 M chloride, the observed stimulation showed the following cation trend $K^+{\geq}Na^+$ > $NH_4^+$ and the following anion sequence was observed: $glutamate^- \; > \; C1^- \;> \; acetate^-\; > \;PO_4^-$ at 1.6 M $K^+$. The catalytic properties of the salt-stimulated ATP hydrolysis reaction was optimal between pH 7.0 and 8.0, which was similar to the double stran nded DNA-dependent ATPase activities of Deinococcus radiodurans RecA protein. In the absence of DNA the active species for ATP hydrolysis by RecA protein was shown to be an aggregate of three RecA protein molecules.

Material Property Evaluation for UFFA Rapid Setting Concrete including Calcium Hydroxide (수산화칼슘을 첨가한 UFFA 초속경 콘크리트의 물성특성 평가)

  • Jeon, Sung-Il;Nam, Jeong-Hee;An, Ji-Hwan;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.189-198
    • /
    • 2008
  • Generally, UFF A(Ultra Fine Fly Ash) has merit that advances a greater concrete workability and activates a greater pozzolanic reaction than common fly ash due to its ultra fine particle size. These properties enhance concrete durability by reducing permeability and increasing resistance of alkali silica reaction(ASR) and sulfate attack, etc. Due to these reasons, UFFA can be used in a rapid setting concrete. The purpose of this study is to develop and evaluate the rapid setting concrete with UFF A as a repair material for early-opening-to-traffic. In previous studies, if only UFFA is added to the rapid setting concrete mixture, pozzolanic reaction doesn't happen actively. Therefore, in this study, the chemical and physical tests were performed for rapid setting concrete with UFFA including calcium hydroxide and the activity of pozzolanic reaction was evaluated. Finally, the effectiveness of this mixture on enhancing concrete durability was investigated. As results, adding UFF A decreased the water/cement ratio of concrete, and compensated the reduced portion of the early strength of concrete. Also, rapid setting concrete with UFFA including calcium hydroxide activated a greater pozzolanic reaction than normal-UFF A concrete. As calcium hydroxide increases, electrical indication of concrete's ability to resist chloride ion penetration is promoted significantly.

  • PDF

Study on Characteristics of Corrosion Products Generated in Iron Artifacts after Conservation Treatments (보존처리 후 철제유물에 생성된 부식물 특성 연구)

  • Jeong, Ji-Hae;Yang, Hee-Jae;Ha, Jin-Uk
    • Journal of Conservation Science
    • /
    • v.29 no.4
    • /
    • pp.297-309
    • /
    • 2013
  • Iron objects become corroded at fast speed from the moment when they are excavated, so it is needed to control corrosion through processes of conservation treatment. However, re-corrosion mostly takes place in excavate iron objects, although they have already gone through the process of conservation treatment, and it is more difficult to carry out the second conservation treatment of re-corroded excavated iron objects than the first conservation treatment, and it requires a longer period of time to treat them as well. In this study, aims to discover factors of re-corrosion by scientifically analyzing corrosion products generated during the process of storage after the process of conservation treatment. The finished on conservation treatment of the iron artifacts, which were unearthed from three ancient site in Gyeongju by using the same conservation method between 2002 and 2009, re-corrosion condition observed on the packaging-iron artifacts. Focused on 9 target forged iron artifacts among them, this study analyzed the physical changes by mass measurement, naked-eye and microscopic observations and the chemical changes by SEM-EDS, XRD, IC and ICP analysis. The results show that the yellowish brown corrosion products formed on the facing surface of part dropped from the artifacts had different associated forms but acicular shape. In addition, the acicular shape became clearer as the color changed from red to yellowish brown. According to the process when the conservation treatment was completed, the mass of the artifacts increased in proportion to the corrosion products and the chloride ion ($Cl^-$) concentration had a tendency to increase relatively. ${\beta}$-FeOOH (akaganeite) was confirmed in the XRD analysis for the corrosion products of all the collected samples. As a result of ICP analysis, $Na^+$ and $Ca^{2+}$ components were confirmed.

The Long-term Durability Evaluation of PC Box for Near-surface Transit System manufactured by Microwave Heat curing (마이크로웨이브 발열양생에 의해 제작된 저심도 철도시스템용 PC BOX의 장기내구성 평가)

  • Koh, Tae-Hoon;Yoo, Han-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.766-771
    • /
    • 2016
  • This study examined the long-term durability of PC boxes, which was manufactured by low-carbon eco-friendly concrete using an alternative binder to cement and alternative fine aggregate to sand and microwave heat curing system to reduce the construction cost of a near-surface transit system. Based on the test results, the initial compressive strength of microwave heat cured concrete was higher than that of the steam cured concrete, but those were similar in the long-term age. In addition, there was no significant difference between the two curing conditions in the chemical resistance and the freeze-thawing resistance, and the chloride ion penetration level of the concrete cured by two methods was very low. Therefore, low-carbon eco-friendly concrete and microwave heat curing technology are expected to contribute to the economic construction of a near-surface transit system, and reduce carbon dioxide emissions and environmental impact.

Electrochemical Studies on the Corrosion Performance of Steel Embeded in Activated Fly Ash Blended Concrete (활성화된 플라이애쉬 혼입콘크리트의 철근부식거동에 관한 전기화학적 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn Chu;Velu, Saraswathy
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.97-108
    • /
    • 2008
  • The use of fly ash to replace a portion of cement has resulted significant savings in the cost of cement production. Fly ash blended cement concretes require a longer curing time and their early strength is low when compared to ordinary Portland cement(OPC) concrete. By adopting various activation techniques such as physical, thermal and chemical method, hydration of fly ash blended cement concrete was accelerated and thereby improved the corrosion-resistance of concrete. Concrete specimens prepared with 10-40% of activated fly ash replacement were evaluated for their open circuit potential measurements, weight loss measurements, impedance measurements, linear polarization measurements, water absorption test, rapid chloride ion penetration test and scanning electron microscopy (SEM) test and the results were compared with those for OPC concrete without fly ash. All the studies confirmed that up to a critical level of 20-30% replacement; activated fly ash cement improved the corrosion-resistance properties of concrete. It was also confirmed that the chemical activation of fly ash better results than the other methods of activation investigated in this study.