• Title/Summary/Keyword: Chloride Ion

Search Result 1,125, Processing Time 0.025 seconds

A Case of Congenital Chloride Diarrhea in Premature Infant (Congenital Chloride Diarrhea 1례)

  • Yoon, Sung Kwan;Kim, Eun Young;Moon, Kyung Rye;Park, Sang Kee
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.3
    • /
    • pp.308-311
    • /
    • 2003
  • Congenital chloride diarrhea is a serious autosomal recessive disease, and defect of intestinal electrolyte absorption that involves, specifically, $Cl^-/{HCO_3}^-$ exchange in the distal part of the ileum and colon. The clinical feature is dominated by profuse, watery diarrhea containing high concentrations of chloride(>90 mmol/L) and sodium. The chloride loss results in severe dehydration with a hypochloremic alkalosis. The molecular pathology involves an epithelial $Cl^-/{HCO_3}^-$ exchanger protein. Mucosal ion transport is affected to differing degrees and the severity of the disease may thus vary. Recently, a gene defect on chromosome 7 has been identified. However, there was a deficit in replacement of fluid and electrolyte, abdominal distension remained and the character of stools was watery. We report a case of congenital chloride diarrhea in a premature female who presented with watery diarrhea containing high concentrations of chloride and abdominal distension.

An Evaluation on the Chloride Resistance of Concrete Footing at Coastal Area -Comparision of Performance in Korea Building Code(KBC)- (해안인접지역 기초 구조물콘크리트의 내염해 성능 평가 -건축구조기준과의 성능비교-)

  • Park, Yong-Kyu;Yoon, Gi-Won;Kim, Hyun-Woo;Kim, Yong-Ro;Song, Young-Chan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.148-149
    • /
    • 2016
  • In this paper, the increase in chloride resistance of footing concrete at coastal area was evaluated by replacement of Mineral Admixture. In KBC 2009, the footing concrete's minimum specific concrete strength at coastal area is determined to 35MPa. However, this is criteria only based on the strength aspect. Thus, it is not considered to increase the chloride resistance by replacement of Mineral Admixture. According to the test results of chloride ions penetration resistance, 35MPa class concrete with OPC 100% shown inaccessible state. Low-strength (24~30MPa class) concretes with Mineral Admixture, however, presented better performances. In addition, chloride diffusion coefficient tests showed identical appearance. Therefore, the current KBC's chloride resistance criteria based on only concrete strength has to review for the reason it can cause many problems (ex. cost increases by growing concrete strength and the environmental issues by a lot of cement use).

  • PDF

Modelling of chloride diffusion in saturated concrete

  • Tsao, Wen-Hu;Huang, Nai-Ming;Liang, Ming-Te
    • Computers and Concrete
    • /
    • v.15 no.1
    • /
    • pp.127-140
    • /
    • 2015
  • The process of chloride ingress in saturated concrete was presented by a previous study that used a mathematical model for the same as that concrete. This model is to be studied chloride ion diffusion which is considered as a chemical phenomenon and is to be represented the chloride diffusion process to be a nonlinear partial differential equation (PDE). In this paper, this nonlinear PDE is solved by the Kirchhoff transformation to render into a linear PDE. This linear PDE associated with initial and boundary conditions is also solved by the Laplace transformation to obtain an analytical solution. To verify the serviceability and reliability of this proposed method, the practical application should be supplied. The input parameters were cited from the previous study. The free chloride concentration profiles obtained by the analytical solution of mathematical model for saturated concretes after 24 and 120 hrs of exposure were compared with the previous study. The predicted results obtained from proposed method have a tendency with experimental results obtained by the previous study and trend toward numerical results approximated by finite difference technique.

Development of a Method for Detecting Iodide and Chloride Ions in Infant Formula using an Ion Selectivity Electrode (이온선택성 전극법을 이용한 조제분유중의 염소 및 요오드 이온함량 분석방법 연구)

  • Ko, Jin-Hyouk;Kwak, Byung-Man;Ahn, Jang-Hyuk;Jeon, Tae-Hong
    • Food Science of Animal Resources
    • /
    • v.28 no.3
    • /
    • pp.301-305
    • /
    • 2008
  • This study was carried out to develop an accurate and rapid analysis method to measure the contents of iodide and chloride in infant formula using an ion selectivity electrode. The infant formula SRM 1846 (Standard Reference Material 1846, NIST, USA) was used as a CRM (Certified reference material). Samples were dissolved in water with 3% acetic acid and filtered through filter paper and adjusted to pH 7.0 with 0.1N NaOH. At pH 7.0, the iodide content of the CRM was $1.04{\pm}0.03\;mg/kg$ compared to the specification of $1.11{\pm}0.1\;mg/kg$ of CRM, and the recovery was $93.7{\pm}2.7%$. The chloride content was $5114.3{\pm}240\;mg/kg$ compared to the specification of $4,920{\pm}300mg/kg$ of CRM, and the recovery was $103.9{\pm}4.9%$. Ion selectivity electrodes could be successful1y used to determine the concentration of iodide and chloride ions in infant formula by a simple and rapid pretreatment of sample matrixes.

Prediction of Chloride Profile considering Binding of Chlorides in Cement Matrix

  • Song, Ha-Won;Lee, Chang-Hong;Ann, Ki Yong
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.81-88
    • /
    • 2009
  • Chloride induced corrosion of steel reinforcement inside concrete is a major concern for concrete structures exposed to a marine environment. It is well known that transport of chloride ions in concrete occurs mainly through ionic/molecular diffusion, as a gradient of chloride concentration in the concrete pore solution is set. In the process of chloride transport, a portion of chlorides are bound in cement matrix then to be removed in the pore solution, and thus only the rest of chlorides which are not bound (i.e. free chlorides) leads the ingress of chlorides. However, since the measurement of free/bound chloride content is much susceptible to environmental conditions, chloride profiles expressed in total chlorides are evaluated to use in many studies In this study, the capacity of chloride binding in cement matrix was monitored for 150 days and then quantified using the Langmuir isotherm to determine the portions of free chlorides and bound chlorides at given total chlorides and the redistribution of free chlorides. Then, the diffusion of chloride ion in concrete was modeled by considering the binding capacity for the prediction of chloride profiles with the redistribution. The predicted chloride profiles were compared to those obtained from conventional model. It was found that the prediction of chloride profiles obtained by the model has shown slower diffusion than those by the conventional ones. This reflects that the prediction by total chloride may overestimate the ingress of chlorides by neglecting the redistribution of free chlorides caused by the binding capacity of cement matrix. From the evaluation, it is also shown that the service life prediction using the free chloride redistribution model needs different expression for the chloride threshold level which is expressed by the total chlorides in the conventional diffusion model.

A multiscale numerical simulation approach for chloride diffusion and rebar corrosion with compensation model

  • Tu, Xi;Li, Zhengliang;Chen, Airong;Pan, Zichao
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.471-484
    • /
    • 2018
  • Refined analysis depicting mass transportation and physicochemical reaction and reasonable computing load with acceptable DOFs are the two major challenges of numerical simulation for concrete durability. Mesoscopic numerical simulation for chloride diffusion considering binder, aggregate and interfacial transition zone is unable to be expended to the full structure due to huge number of DOFs. In this paper, a multiscale approach of combining both mesoscopic model including full-graded aggregate and equivalent macroscopic model was introduced. An equivalent conversion of chloride content at the Interfacial Transition Layer (ITL) connecting both models was considered. Feasibility and relative error were discussed by analytical deduction and numerical simulation. Case study clearly showed that larger analysis model in multiscale model expanded the diffusion space of chloride ion and decreased chloride content in front of rebar. Difference for single-scale simulation and multiscale approach was observed. Finally, this paper addressed some worth-noting conclusions about the chloride distribution and rebar corrosion regarding the configuration of rebar placement, rebar diameter, concrete cover and exposure period.

Changes of Total and Ionized Calcium following Cardiopulmonary Bypass (심폐관류에 따른 혈청칼슘의 변동)

  • 전상훈
    • Journal of Chest Surgery
    • /
    • v.21 no.2
    • /
    • pp.240-245
    • /
    • 1988
  • This study was prospectively planned to realize the reduction of calcium ion in serum along with the cardiopulmonary bypass[CPB], to find out the cause of the reduction, and to verify the justification of the classical methods of calcium replacement. Nine patients with various open heart surgeries by CPB in 1987 wee selected at random. Calcium chloride was added as follows:: For each unit of ACD blood transfusion, 600mg of calcium chloride was added. In case of massive transfusion, 600 mg of calcium chloride was injected every 2 or 3 units of transfusion. On occasions such as weaning from CPB, or following defibrillation, or hypotension, weak myocardial contractility of the heart, calcium chloride was needed in an amount of 10 mg / kg. In ICU, calcium chloride was limited to use in low serum level or in emergency use. Total calcium decreased early bypass and progressively increased above the preoperative value during late bypass and three hours thereafter, Ionized calcium increased during late bypass and three hours following. Total and ionized calcium depicted similar patterns of change during open heart surgery. Decrease of the calcium at the early bypass was thought from reduction of total protein and alkalosis during bypass. Meanwhile, increase of both calciums during the end of surgery was presumably attributable to addition of calcium chloride in priming solution, injections of calcium chloride in the process of termination of bypass. We conclude that enough calcium was replaced by the classical methods of calcium supplement.

  • PDF

A Study on Chloride Diffusion in Concrete Containing Lightweight Aggregate Using Crushed Stone-powder (폐석분을 활용한 경량골재 콘크리트의 염화물 확산에 관한 연구)

  • Lee, Dae-Hyuk;Jee, NamYong;Kim, Jae-Hun;Jeong, Yong;Shin, Jae-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.127-131
    • /
    • 2009
  • The purpose of this study is to provide fundamental data on chloride diffusion from lightweight aggregate concrete by utilizing crushed stone-powder. Accordingly, the study performed experiments using concrete aggregates of Crushed Aggregate (CG), Single-sized Lightweight Aggregate (SLG), Continuous Graded Lightweight Aggregate (CLG), and using water-binder ratio of 0.4, 0.5, 0.6, and using binder of FA and BFS. The chloride diffusion coefficient is calculated after experiment based on NT BUILD 492. Diffusion coefficient of SLG and CLG were little bit higher than CG Concrete, but the difference is meaningless. Also, chloride diffusion coefficient indicates that it is highly affected by water-binder ratio, and it decreases with the decrease in water-binder ratio. The admixture substitution indicates decrease only with water-binder ratio of 0.4 for FA15% case, but admixture substitution indicates decrease with all levels of ratio for FA10 + BFS20% which means more appropriate. According to the analysis result of chloride diffusion from lightweight aggregate concrete, crushed stone-powder utilized lightweight aggregate concrete indicates higher chloride diffusion coefficient than CG concrete, which is not a significant difference, and can improve resistance through water-binder ratio and admixture substitution.

  • PDF

Strength and Resistance to Chloride Penetration in Concrete Containing GGBFS with Ages (GGBFS를 혼입한 콘크리트의 재령에 따른 강도 및 염소이온 침투 저항성)

  • Park, Jae-Sung;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.307-314
    • /
    • 2017
  • Concrete is a durable and cost-benefit construction material, however performance degradation occurs due to steel corrosion exposed to chloride attack. Penetration of chloride ion usually decreases due to hydrates formation and reduction of pores, and the reduced chloride behavior is considered through decreasing diffusion coefficient with time. In the work, HPC (High Performance Concrete) samples are prepared with 3 levels of W/B (water to binder) ratios of 0.37, 0.42, and 0.27 and 3 levels of replacement ratios of 0%, 30% and 50%. Several tests containing chloride diffusion coefficient, passed charge, and compressive strength are performed considering age effect of 28 days and 180 days. Chloride diffusion is more reduced in OPC concrete with lower W/B ratio and GGBFS concrete with 50% replacement ratio shows significant reduction of chloride diffusion in higher W/B ratio. At the age of 28 days, GGBFS concrete with 50% replacement ratio shows more rapid reduction of chloride diffusion than strength development, which reveals that abundant GGBFS replacement has effective resistance to chloride penetration even in the early-aged condition.

A Study on Repair Method of Concrete Structures using the Solution of Removing Chloride (염분제거용 약액을 이용한 콘크리트 구조물의 보수공법에 관한 연구)

  • Kim, Woonhak;Hwang, Sungwoon;Kang, Seokwon
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.4
    • /
    • pp.562-569
    • /
    • 2017
  • Reinforced concrete is used for bridges and large structures that are constructed with social overhead capital because they are economically and semi-permanently integrated with reinforcing bar and concrete. However, when the chloride ion in the concrete destroys the passive film of the reinforcing bar by the marine exposure environment and the snow remover used in the winter season, and the reinforcing bar is corroded by various chemical and physical actions, the durability is deteriorated in a short period, and the life span is shortened. In this study, a repair method to recover the durability of the initial structure by effectively removing chloride ion from the damage caused by salting of the above mentioned reinforced concrete was conducted.