• 제목/요약/키워드: Chitosan oligosaccharide

검색결과 61건 처리시간 0.026초

키틴 고정화 효소를 이용한 키토산 올리고당의 생산 (Production of Chitosna Oligosaccharides Using Chitin-Immobilized Enzyme)

  • 전유진;박표잠;변희국;송병권;김세권
    • KSBB Journal
    • /
    • 제13권2호
    • /
    • pp.147-154
    • /
    • 1998
  • 키토산 올리고당을 효율적으로 생산하기 위하여 고정화 효소 를 이용한 키토산의 효소적 가수분해를 시도하였다. Chitosanase는 Chitopearl계 고정화 담체에 대해서 높은 흡착율로 결합되었다. 키틴에 고정화된 효소는 비록 흡착율은 낮았지 만 그 활성은 가장 높게 나타났다. 키틴 고정화 효소는 유리 효소에 비해 약 90% 이상의 활성을 유지하였다. 고정화 효소의 최적 온도는 60°C로서 유리 효소보다 $15^{\circ}C$ 더 높았으며, 열에 대한 안정성도 유리 효소보다 넓은 온도범위에서 우수하였다 그러나 고정화 효소는 pH에 대해서는 어떠한 뚜렷한 효과도 보이지 않았다. 고정화 효소의 저장 안정성은 유리 효소보다 더 높은 저장온도인 60t에서도 더 안정한 것으로 나타났다. 키틴 고정화 효소에 의한 키토산의 가수분해반응은 반응 3시간까지 급격한 증가를 보이다 그 이후의 반응시간 경과에서도 더 이상 증가를 보이지 않았다. 고정화 효소에 의해 생성된 올리고당의 조성은 효소의 반응시간에 따라 크게 의존하였으며, 2시간의 반 응에서 비교적 고차 올라고당인 COS-4-6의 함량은 약 90% 이상이었다 두 효소에 대한 반용속도상수에서, 고정화 효소는 유리 효소에 비해 낮은 기질친화성과 낮은 반웅속도를 보였지 만, 높은 기질농도에서도 전혀 기질저해반응은 일어나지 않았다. 따라서 키틴 고정화 효소는 유리 효소에 비해 활성의 감소없이 효율적으로 키토산을 가수분해할 수 있었으며, 고차 올리고당의 생성 량도 매우 높았다.

  • PDF

Effect of Galacto-mannan-oligosaccharides or Chitosan Supplementation on Cytoimmunity and Humoral Immunity in Early-weaned Piglets

  • Yin, Y.-L.;Tang, Z.R.;Sun, Z.H.;Liu, Z.Q.;Li, T.J.;Huang, R.L.;Ruan, Z.;Deng, Z.Y.;Gao, B.;Chen, L.X.;Wu, G.Y.;Kim, S.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권5호
    • /
    • pp.723-731
    • /
    • 2008
  • Immunomodulatory feed additives might offer alternatives to antimicrobial growth promoters in pig production. This experiment was designed to determine the effects of dietary galacto-mannan-oligosaccharide (GMOS) and chitosan oligosaccharide (COS) supplementation on the immune response in early-weaned piglets. Forty 15-day-old piglets (Duroc$\times$Landrace$\times$Yorkshire) with an average live body weight of $5.6{\pm}0.51kg$ were weaned and randomly assigned to 4 treatment groups that were fed maize-soybean meal diets containing either basal, 110 mg/kg of lincomycin, 250 mg/kg of COS or 0.2% GMOS, respectively, over a 2-week period. Another six piglets of the same age were sacrificed on the same day at the beginning of the study for sampling, in order to obtain baseline values. Interleukin (IL)-1${\beta}$gene expression in peripheral blood monocytes, jejunal mucosa and lymph nodes, as well as serum levels of IL-1${\beta}$ IL-2 and IL-6, IgA, IgG, and IgM, were evaluated for 5 pigs from each group at 15 and 28 days of age. The results indicate that weaning stress resulted in decreases in serum antibody and cytokine levels. Dietary supplementation with GMOS or COS enhanced (p<0.05) IL-1${\beta}$gene expression in jejunal mucosa and lymph nodes, as well as serum levels of IL-1${\beta}$ IL-2, IL-6, IgA, IgG and IgM compared to supplementation with lincomycin. These findings suggest that GMOS or COS may enhance the cell-mediated immune response in early-weaned piglets by modulating the production of cytokines and antibodies, which shows that GMOS or COS have different effects than the antibiotic on animal growth and health.

Effect of Podophyllotoxin Conjugated Stearic Acid Grafted Chitosan Oligosaccharide Micelle on Human Glioma Cells

  • Wang, Geng Huan;Shen, He Ping;Huang, Xuan;Jiang, Xiao Hong;Jin, Cheng Sheng;Chu, Zheng Min
    • Journal of Korean Neurosurgical Society
    • /
    • 제63권6호
    • /
    • pp.698-706
    • /
    • 2020
  • Objective : To study the physiochemical characteristics of podophyllotoxin (PPT) conjugated stearic acid grafted chitosan oligosaccharide micelle (PPT-CSO-SA), and evaluate the ability of the potential antineoplastic effects against glioma cells. Methods : PPT-CSO-SA was prepared by a dialysis method. The quality of PPT-CSO-SA including micellar size, zeta potential, drug encapsulation efficiency and drug release profiles was evaluated. Glioma cells were cultured and treated with PPT and PPT-CSO-SA. The ability of glioma cells to uptake PPT-CSO-SA was observed. The proliferation of glioma cells was determined by 3-[4, 5-dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay. The apoptosis and morphology of U251 cells were observed by 4',6-Diamidino-2-phenylindole dihydrochloride (DAPI) dye staining. Cell cycle analysis was performed by flow cytometry. The migration ability of U251 cells was determined by wound healing test. Results : PPT-CSO-SA had nano-level particle size and sustained release property. The encapsulation efficiency of drug reached a high level. The cellular uptake percentage of PPT in glioma cells was lower than that of PPT-CSO-SA (p<0.05). The inhibitory effect of PPT-CSO-SA on glioma cells proliferation was significantly stronger than that of PPT (p<0.05). The morphologic change of apoptosis cell such as shrinkage, karyorrhexis and karyopyknosis were observed. The percentage of U251 cells in G2/M phase increased significantly in the PPT-CSO-SA group compared with PPT group (p<0.05). Compared with the PPT group, the cell migration ability of the PPT-CSO-SA group was significantly inhibited after 12 and 24 hours (p<0.05). Conclusion : PPT-CSO-SA can effectively enhance the glioma cellular uptake of drugs, inhibit glioma cells proliferation and migration, induce G2/M phase arrest of them, and promote their apoptosis. It may be a promising anti-glioma nano-drug.

Isolation, Purification, and Enzymatic Characterization of Extracellular Chitosanase from Marine Bacterium Bacillus subtilis CH2

  • Oh, Chul-Hong;Zoysa, Mahanama De;Kang, Do-Hyung;Lee, Young-Deuk;Whang, Il-Son;Nikapitiya, Chamilani;Heo, Soo-Jin;Yoon, Kon-Tak;Affan, Abu;Lee, Je-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권10호
    • /
    • pp.1021-1025
    • /
    • 2011
  • A Bacillus subtilis strain was isolated from the intestine of Sebastiscus marmoratus (scorpion fish) that was identified as Bacillus subtilis CH2 by morphological, biochemical, and genetic analyses. The chitosanase of Bacillus subtilis CH2 was best induced by fructose and not induced with chitosan, unlike other chitosanases. The strain was incubated in LB broth, and the chitosanase secreted into the medium was concentrated with ammonium sulfate precipitation and purified by gel permeation chromatography. The molecular mass of the purified chitosanase was detected as 29 kDa. The optimum pH and temperature of the purified chitosanase were 5.5 and $60^{\circ}C$, respectively. The purified chitosanase was continuously thermostable at $40^{\circ}C$. The specific acitivity of the purified chitosanase was 161 units/mg. The N-terminal amino acid sequence was analyzed for future study.

Bacillus amyloliquefaciens MJ-1 유래의 chitosanase 유전자의 클로닝 및 특성 (Molecular Cloning and Characterization of Chitosanase Gene from Bacillus amyloliquefaciene MJ-1)

  • 박찬수;오해근;홍순광;박병철;현영;강대경
    • 미생물학회지
    • /
    • 제42권2호
    • /
    • pp.142-148
    • /
    • 2006
  • 본 연구는 다양한 생리활성을 가지고 있는 chitosan oligosaccharides를 효소적 방법으로 생산하기 위한 기초 연구로서, 전통발효식품인 메주에서 chitosan 분해능이 우수한 균주를 분리하였다. 분리한 균주를 형태학적, 생화학적 및 분자생물학적 방법을 이용하여 동정한 결과, Bacillus amyloliquefaciene MJ-1으로 명명하였다. B. amyloliquefaciene MJ-1으로 부터 chitosanase 유전자를 포함하는 1,049 bp DNA 단편을 클로닝하였으며, chitosanase 유전자는 825 염기로서 274 개의 아미노산으로 구성되어 있었고, 예상 분자랸은 30.9 kDa이었다. 클로링한 chitosanase의 homology search 결과, glucoside hydrolase family 46에 속하는 chitosanase로 추정되었다. B. amyloliquefaciene MJ-1 chitosanase 유전자를 E. coli BLR (DE3)에 도입하였으며, 1 mM의 IPTG로 chitosanase 과잉 발현을 유도하고 정제한 후, pH및 온도에 대한 특성을 조사하였다. 효소 활성의 최적 온도는 $60^{\circ}C$이었으며, $80^{\circ}C$에서도 75%의 활성을 나타내었으므로 내열성을 가진 효소로 추정되었다. 한편, 최적 pH는 5.0 이었으며, pH $5{\sim}7$사이에서 80% 이상의 높은 활성을 유지하였다.

Chito-oligosaccharides as an Alternative to Antimicrobials in Improving Performance, Digestibility and Microbial Ecology of the Gut in Weanling Pigs

  • Han, K.N.;Kwon, I.K.;Lohakare, J.D.;Heo, S.;Chae, B.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권4호
    • /
    • pp.556-562
    • /
    • 2007
  • A total of 126 crossbred weanling pigs (average body weight of $6.3{\pm}0.3$ kg) were used to investigate the effect of chito-oligosaccharide (COS) on growth performance, nutrient digestibility, pH of gastro-intestinal tract (GI), intestinal and fecal microflora of young piglets. Pigs were allocated to three dietary treatments based on body weight and gender in a single factorial arrangement. Treatments were control (No COS), T1 (0.2% COS during starter (6-13 kg) and 0.1% COS during grower (13-30 kg) phases, and T2 (0.4% COS during starter (6-13 kg) and 0.3% COS during grower (13-30 kg) phases, respectively. Each treatment had 3 replicates and 14 pigs were raised in each pen. COS is a low molecular weight water-soluble chitosan that can be obtained from chitin of the crab shell after deacetylation with concentrated sodium hydroxide at high temperature and then further decomposition by chitosanase enzyme in the presence of ascorbic acid. For the starter and grower periods, there were no significant differences (p>0.05) in average daily gain (ADG) and feed to gain ratio among treatments. However, during the overall period (6-30 kg), T2 showed better (p<0.05) feed to gain ratio than other treatments. A digestibility study was conducted at the end of grower phase which showed improvement (p<0.05) in DM and crude fat digestibility in T2 over the control. At 25 kg body weight, 6 pigs per treatment (2 per replicate) were sacrificed to determine the effect of diets on pH and microbial count at different sections of the GI tract. The pH of the cecal contents in pigs fed 0.1% COS was higher (p<0.05) than in the other treatments. Total anaerobic bacterial number increased from cecum to rectum in all treatments. The weekly total bacterial counts showed higher (p<0.05) in feces of pigs fed COS than that of untreated pigs at the $8^{th}$ week. The number of fecal E. coli in untreated pigs at $4^{th}$ wk was 7.35 log CFU/g compared to 6.71 and 6.54 log CFU/g in 0.1 and 0.3% COS-treated pigs, respectively. Similarly, at $8^{th}$ wk, fecal clostridium spp. were lower in pigs fed 0.3% COS (5.43 log CFU/g) than in untreated pigs (6.26 log CFU/g). In conclusion, these results indicated that chito-oligosaccharide could improve feed efficiency in young pigs and inhibited the growth of harmful bacteria.

키토산올리고당을 섭취한 쥐에서 간 미세구조의 연구 (Ultrastructural Study of the Liver by Chitosanoligosaccharide Administrated in Rat)

  • 김영호;노영복
    • Applied Microscopy
    • /
    • 제31권4호
    • /
    • pp.385-392
    • /
    • 2001
  • 본 연구의 목적은 키토산올리고당의 쥐 간조직 독성여부를 관찰하고자 하였다. 건강한 Wistar계 쥐를 사용하였다. 실험군은 Group 1. 일반식이를 섭취한 대조군, Group 2 0.1%(1mg/ml)키토산올리고당 수용액을 30일 간 음용수를 통해 자유자재로 섭취시킨 후 교미시켜 태어난 $F_1$ 세대, Group 3 $F_1$ 세대의 쥐에게 0.1%(1 mg/ml) 키토산올리고당 수용액을 30일간 음용수를 통해 자유자재로 섭취한 후 교미시켜 태어난 $F_2$ 세대, Group 40.1% (1 mg/ml) 키토산올리고당 수용액을 90일간 음용수를 통해 자유자재로 섭취시킨 군, Group 50.1% (1 mg/ml) 키토산올리고당 수용액을 365일간 음용수를 통해 자유자재로 섭취시킨 군의 쥐 등으로 각 실험군 당 쥐 10마리를 사용하였고, 다음과 같은 결과를 얻었다. Group 4의 경우 약간의 소포체 팽창을 관찰하였을뿐, 다른 실험군에서는 대조군과 비교하여 특별한 간 조직의 미세구조 변화를 관찰하지 못하였다. 결론적으로 키토산올리고당은 무독성 물질로서 안전성이 있다고 사료된다.

  • PDF

산란계에 있어 Fermkito 50의 첨가가 혈청 및 난황내 콜레스테롤 함량과 계란품질에 미치는 영향 (Effects of Fermkito 50 Supplementation on Serum and Egg Yolk Cholesterol Levels and Egg Quality in Laying Hens)

  • 홍종옥;문태현;권오석;이상환
    • 한국가금학회지
    • /
    • 제28권1호
    • /
    • pp.7-13
    • /
    • 2001
  • This study conducted to investigate the effects of feeding Fermkito 50 on the egg production and egg quality hens. One hundred forty four, 50 weeks old ISA brown commercial layer, were used in a 28 d growth assay. Dietary treatments included 1) control(basal diet), 2) FERMO.5(based diet+0.5% Fermkito), 2) FERM1.0(basal diet+1.0% Fermkito), 3) FERM+YU(basal diet+0.5% Fermkito and 0.05% yucca extract). Overall (d 0 to 28), egg production tended to increase as the concentration of Fermkito 50 in the diets was increased without significant difference(P〈0.05). As adding level of Fermkito 50 increased in the diets, egg weight tended to increase. Laying hens fed FERM+YU diet were higher egg weight than laying hens fed control diet(P〈0.05). Egg shell breaking strength was not influenced by Fermkito 50. As adding level of Fermkito 50 was increased in the diets, yolk color tended to increase. Laying hens fed FERM+YU diet had improved egg yolk index compared to laying hens fed control diet. Total-cholesterol of egg yolk in FERM1.0 and FERM+YU treatments was significantly decreased compared to that in control diet(p〈0.05). Total-cholesterol and triglyceride concentrations in serum tended to increase as the concentration of Fermkito 50 in the diets was decreased(P〈0.05). Also, HDL-cholesterol concentration in serum with FERM1.0 and FEUM+YU treatments was significantly higher than control diet(P〈0.05). However, LDL-cholesterol concentration in serum with FERM1.0 and FERM0.5+YU treatments was significantly lower than control diet(P〈0.05). In conclusion, supplemental Fermkito 50 in laying hen diets can be used to improve egg quality.

  • PDF

면역기능 증강 신물질에 대한 마우스의 면역학적 및 혈액학적 변화 (Changes of immunostimulatory effects by Immu-Forte on mice)

  • 정지윤
    • 대한수의학회지
    • /
    • 제45권4호
    • /
    • pp.501-505
    • /
    • 2005
  • Immu-Forte composed of chitosan, ${\beta}-glucan$, manno-oligosaccharide and pangamic acid was evaluated for its effectiveness as a nonspecific immunostimulator in mice. The effects of Immu-Forte were determined by analysis of cytokines using ELISA and phenotype of leukocyte subpopulations using monoclonal antibodies specific to mouse leukocyte differentiation antigens and flow cytometry. All T cells, all B cells, CD4 T cells, CD8 T cells, macrophages, IL-2, IL-4, IL-12 and IFN-r in Immu-Forte A-treated group increased in 1 months posttreatment and were significantly higher (p < 0.05) than that of control at 1 months posttreatment. All T cells, all B cells, CD4 T cells, CD8 T cells, macrophages and IL-2 in Immu-Forte EX-treated low and middle dose groups increased in 1 months posttreatment and were significantly higher (p < 0.05) than that of control at 1 months posttreatment. In the Immu-Forte soybean-treated group, NK cells and IL-4 were significantly higher in middle dose-treated group, and IL-2, IL-4 and IFN-r were significantly higher in low dose-treated group. In the Immu-Forte F-treated group, all T cells, all B cells, CD4 T cells, CD8 T cells, macrophages, NK cells, IL-2, IL-4, IL-12 and IFN-r in high dose-treated group and all T cells, all B cells, CD4 T cells, CD8 T cells, macrophages, IL-2, IL-4, IL-12 and IFN-r in middle dose-treated group and NK cells, IL-2, IL-4, IL-12 and IFN-r in low dose-treated group were significantly higher (p < 0.05) than that of control at 1 months posttreatment. In conclusion, this study has demonstrated that Immu-Forte had an immunostimulatory effect on mice through proliferation and activation of mouse immune cells.

Characterization of a GH8 β-1,4-Glucanase from Bacillus subtilis B111 and Its Saccharification Potential for Agricultural Straws

  • Huang, Zhen;Ni, Guorong;Zhao, Xiaoyan;Wang, Fei;Qu, Mingren
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권10호
    • /
    • pp.1446-1454
    • /
    • 2021
  • Herein, we cloned and expressed an endo-β-1,4-glucanase gene (celA1805) from Bacillus subtilis B111 in Escherichia coli. The recombinant celA1805 contains a glycosyl hydrolase (GH) family 8 domain and shared 76.8% identity with endo-1,4-β-glucanase from Bacillus sp. KSM-330. Results showed that the optimal pH and temperature of celA1805 were 6.0 and 50℃, respectively, and it was stable at pH 3-9 and temperature ≤50℃. Metal ions slightly affected enzyme activity, but chemical agents generally inhibited enzyme activity. Moreover, celA1805 showed a wide substrate specificity to CMC, barley β-glucan, lichenin, chitosan, PASC and avicel. The Km and Vmax values of celA1805 were 1.78 mg/ml and 50.09 µmol/min/mg. When incubated with cellooligosaccharides ranging from cellotriose to cellopentose, celA1805 mainly hydrolyzed cellotetrose (G4) and cellopentose (G5) to cellose (G2) and cellotriose (G3), but hardly hydrolyzed cellotriose. The concentrations of reducing sugars saccharified by celA1805 from wheat straw, rape straw, rice straw, peanut straw, and corn straw were increased by 0.21, 0.51, 0.26, 0.36, and 0.66 mg/ml, respectively. The results obtained in this study suggest potential applications of celA1805 in biomass saccharification.