Browse > Article
http://dx.doi.org/10.4014/jmb.2105.05026

Characterization of a GH8 β-1,4-Glucanase from Bacillus subtilis B111 and Its Saccharification Potential for Agricultural Straws  

Huang, Zhen (Key Laboratory of Animal Nutrition of Jiangxi Province, Nutritional Feed Development Engineering Research Center, Jiangxi Agricultural University)
Ni, Guorong (College of Land Resources and Environment, Jiangxi Agricultural University)
Zhao, Xiaoyan (College of Bioscience and Bioengineering, Jiangxi Agricultural University)
Wang, Fei (College of Bioscience and Bioengineering, Jiangxi Agricultural University)
Qu, Mingren (Key Laboratory of Animal Nutrition of Jiangxi Province, Nutritional Feed Development Engineering Research Center, Jiangxi Agricultural University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.10, 2021 , pp. 1446-1454 More about this Journal
Abstract
Herein, we cloned and expressed an endo-β-1,4-glucanase gene (celA1805) from Bacillus subtilis B111 in Escherichia coli. The recombinant celA1805 contains a glycosyl hydrolase (GH) family 8 domain and shared 76.8% identity with endo-1,4-β-glucanase from Bacillus sp. KSM-330. Results showed that the optimal pH and temperature of celA1805 were 6.0 and 50℃, respectively, and it was stable at pH 3-9 and temperature ≤50℃. Metal ions slightly affected enzyme activity, but chemical agents generally inhibited enzyme activity. Moreover, celA1805 showed a wide substrate specificity to CMC, barley β-glucan, lichenin, chitosan, PASC and avicel. The Km and Vmax values of celA1805 were 1.78 mg/ml and 50.09 µmol/min/mg. When incubated with cellooligosaccharides ranging from cellotriose to cellopentose, celA1805 mainly hydrolyzed cellotetrose (G4) and cellopentose (G5) to cellose (G2) and cellotriose (G3), but hardly hydrolyzed cellotriose. The concentrations of reducing sugars saccharified by celA1805 from wheat straw, rape straw, rice straw, peanut straw, and corn straw were increased by 0.21, 0.51, 0.26, 0.36, and 0.66 mg/ml, respectively. The results obtained in this study suggest potential applications of celA1805 in biomass saccharification.
Keywords
Bacillus subtilis; endoglucanase; expression; characterization; oligosaccharide; saccharification;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5: R245-249.   DOI
2 Wolfgang H. Schwarz FG, Staudenbauer WL. 1986. Properties of a Clostridium thermocellum endoglucanase produced in Escherichia coli. Appl. Environ. Microbiol. 51: 1293-1299.   DOI
3 Fushinobu S, Hidaka M, Honda Y, Wakagi T, Shoun H, Kitaoka M. 2005. Structural basis for the specificity of the reducing end xylose-releasing exo-oligoxylanase from Bacillus halodurans C-125. J. Biol. Chem. 280: 17180-17186.   DOI
4 Huang X, Shao Z, Hong Y, Lin L, Li C, Huang F, et al. 2010. Cel8H, a novel endoglucanase from the halophilic bacterium Halomonas sp. S66-4: molecular cloning, heterogonous expression, and biochemical characterization. J. Microbiol. 48: 318-324.   DOI
5 Lee JP, Kim YA, Kim SK, Kim H. 2018. Characterization of a multimodular endo-β-1,4-glucanase (Cel9K) from Paenibacillus sp. X4 with a potential additive for saccharification. J. Microbiol. Biotechnol. 28: 588-596.   DOI
6 Shinoda S, Kanamasa S, Arai M. 2012. Cloning of an endoglucanase gene from Paenibacillus cookii and characterization of the recombinant enzyme. Biotechnol. Lett. 34: 281-286.   DOI
7 Liu D, Zhang R, Yang X, Xu Y, Tang Z, Tian W, et al. 2011. Expression, purification and characterization of two thermostable endoglucanases cloned from a lignocellulosic decomposing fungi Aspergillus fumigatus Z5 isolated from compost. Protein Expr. Purif. 79: 176-86.   DOI
8 Hakamada Y, Endo K, Takizawa S, Kobayashi T, Shirai T, Yamane T, et al. 2002. Enzymatic properties, crystallization, and deduced amino acid sequence of an alkaline endoglucanase from Bacillus circulans. Biochim. Biophys. Acta 1570: 174-180.   DOI
9 Gabriela Leila Berto, Josman Velasco, Caio Tasso Cabos Ribeiro, Leticia Maria Zanphorlin , Mariane Noronha Domingues , Mario Tyago Murakami, et al. 2019. Functional characterization and comparative analysis of two heterologous endoglucanases from diverging subfamilies of glycosyl hydrolase family 45. Enzyme Microb. Technol. 120: 23-35.   DOI
10 D Kaiser, C Manoil, M Dworkin. 1979. Myxobacteria: cell interactions, genetics, and development. Annu. Rev. Microbiol. 33: 595-639.   DOI
11 Arvind Kumar RN. 2019. Chapter 6 - Differential expression of the microbial β-1,4-xylanase, and β-1,4-endoglucanase genes. New and Future Developments in Microbial Biotechnology and Bioengineering. 95-111.
12 Medie FM, Davies GJ, Drancourt M, Henrissat B. 2012. Genome analyses highlight the different biological roles of cellulases. Nat. Rev. Microbiol. 10: 227-234.   DOI
13 Judyta Strakowska, Lidia Blaszczyk, Jerzy Chelkowski. 2014. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus. J. Basic Microbiol. 54 Suppl 1: S2-13.   DOI
14 Bhat A, Riyaz-Ul-Hassan S, Ahmad N, Srivastava N, Johri S. 2013. Isolation of cold-active, acidic endocellulase from Ladakh soil by functional metagenomics. Extremophiles 17: 229-239.   DOI
15 Li X, Xia J, Zhu X, Bilal M, Tan Z, Shi H. 2019. Construction and characterization of bifunctional cellulases: caldicellulosiruptor-sourced endoglucanase, CBM, and exoglucanase for efficient degradation of lignocellulose. Biochem. Eng. J. 151: 107363.   DOI
16 Lin Zhang YFHZ. 2013. Isolation and characterization of a novel endoglucanase from a Bursaphelenchus xylophilus metagenomic library. PLos One 8: e82437.   DOI
17 Berlemont R, Martiny AC. 2013. Phylogenetic distribution of potential cellulases in bacteria. Appl. Environ. Microbiol. 79: 1545-1554.   DOI
18 Ogura JTUO, Toyoda A, Kurosawa T, Chong AL, Chohnan S, Masaki T. 2006. Purification, characterization, and gene analysis of cellulase (Cel8A) from Lysobacter sp. IB-9374. Biosci. Biotechnol. Biochem. 70: 2420-2428.   DOI
19 Kupski L, Pagnussatt FA, Buffon JG, Furlong EB. 2014. Endoglucanase and total cellulase from newly isolated Rhizopus oryzae and Trichoderma reesei: production, characterization, and thermal stability. Appl. Biochem. Biotechol. 172: 458-468.   DOI
20 Kim HBNW, Kim HDYJ. 2015. Characterization of a GH family 8 β-1,3-1,4-glucanase with distinctive broad substrate specificity from Paenibacillus sp. X4. Biotechnol. Lett. 37: 643-655.   DOI
21 Bradford MM. 1976. A rapid and sensitive method for the quantitation quantities microgram principle of protein-dye binding. Anal. Biochem. 2: 248-254.   DOI
22 Miller GL. 1959. Use of dinitrosaIicyIic acid reagent for determination of reducing sugar. Anal. Chem. 3: 426-428.   DOI
23 Tripti Dadheech , Ravi Shah , Ramesh Pandit , Ankit Hinsu, Prakram Singh Chauhan, Subhash Jakhesara, et al. 2018. Cloning, molecular modeling and characterization of acidic cellulase from buffalo rumen and its applicability in saccharification of lignocellulosic biomass. Int. J. Biol. Macromol. 113: 73-81.   DOI
24 Filip Van Petegem TCMM, Charles Gerday GF, Van Beeumen AJ. 2003. Cold and investigation of the structural adaptations to xylanase at 1.3 A resolution: the structure of a cold-adapted family 8. J. Biol. Chem. 278: 7531-7539.   DOI
25 Ueda M, Ito A, Nakazawa M, Miyatake K, Sakaguchi M, Inouye K. 2014. Cloning and expression of the cold-adapted endo-1,4-β-glucanase gene from Eisenia fetida. Carbohydr. Polym. 101: 511-516.   DOI
26 Jae Pil Lee HWLH, Sung Kyum Kim HK. 2018. Characterization of truncated endo-β-1,4-glucanases from a compost metagenomic library and their saccharification potentials. Int. J. Biol. Macromol. 115: 554-562.   DOI
27 Valenzuela SV, Lopez S, Biely P, Sanz-Aparicio J, Pastor FIJ. 2016. The glycoside hydrolase family 8 reducing-end xylose-releasing exo-oligoxylanase Rex8A from Paenibacillus barcinonensis BP-23 is active on branched xylooligosaccharides. Appl. Environ. Microbiol. 82: 5116-5124.   DOI
28 Claudia CR, Alejandro SH, Flor N RO, Yolanda GH, Gerardo Z, Maria E. HL. 2016. Expression, purification and characterization of an endoglucanase from Serratia proteamaculans CDBB-1961, isolated from the gut of Dendroctonus adjunctus (Coleoptera: Scolytinae). AMB Express 63. doi: 10.1186/s13568-016-0233-9.   DOI
29 Takeshi Ohta, Hitomi Horie, Aina Matsu-Ura, Fusako Kawai. 2019. Cloning, expression, and characterization of novel GH5 endoglucanases from Thermobifida alba AHK119. J. Biosci. Bioeng. 127: 554-562.   DOI
30 Adachi W, Sakihama Y, Shimizu S, Sunami T, Fukazawa T, Suzuki M, et al. 2004. Crystal structure of family GH-8 chitosanase with subclass II specificity from Bacillus sp. K17. J. Mol. Biol. 343: 785-795.   DOI
31 Alzari PM, Souchon H, Dominguez R. 1996. The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from Clostridium thermocellum. Structure 4: 265-275.   DOI
32 Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M, Salehi Jouzani G, Najafi GH, et al. 2013. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 27: 77-93.   DOI
33 Yan J, Liu W, Li Y, Lai H, Zheng Y, Huang J, et al. 2016. Functional and structural analysis of Pichia pastoris-expressed Aspergillus niger 1,4-β-endoglucanase. Biochem. Biophys. Res. Commun. 475: 8-12.   DOI
34 Ornella M Ontanon, S Ghio, Ruben Marrero Diaz de Villegas, Mercedes M Garrido, Paola M Talia , Csaba Feher, et al. 2019. A thermostable GH8 endoglucanase of Enterobacter sp. R1 is suitable for β-glucan deconstruction. Food Chem. 298: 124999.   DOI
35 UK L. 1970. Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature 227: 680-685.   DOI
36 Zhang B, Liu Y, Yang H, Yan Q, Yang S, Jiang Z, et al. 2017. Biochemical properties and application of a novel β-1,3-1,4-glucanase from Paenibacillus barengoltzii. Food Chem. 234: 68-75.   DOI
37 A. Bueno CRVD. 1990. Nucleotide sequence of a 1,3-1,4-β-glucanase-encoding gene in Bacillus circulans WL-12. Nucleic Acids Res. 18: 4248.   DOI
38 ITO KOAS. 1991. Purification and properties of an acid endo-1,4-beta-glucanase from Bacillus sp. KSM-330. J. Gen. Microbiol. 137: 41-48.   DOI
39 Ornella M Ontanon, Silvina Ghio, Ruben Marrero Diaz de Villegas, Mercedes M Garrido, Paola M Talia, Csaba Feher, et al. 2019. A thermostable GH8 endoglucanase of Enterobacter sp. R1 is suitable for β-glucan deconstruction. Food Chem. 298: 124999.   DOI
40 Ghio S, Bradanini MB, Garrido MM, Ontanon OM, Piccinni FE, Marrero Diaz De Villegas R, et al. 2020. Synergic activity of Cel8Pa β-1,4 endoglucanase and Bg1Pa β-glucosidase from Paenibacillus xylanivorans A59 in beta-glucan conversion. Biotechnol. Rep. 28: e526.
41 Baek SC, Ho T, Lee HW, Jung WK, Gang H, Kang L, et al. 2017. Improvement of enzyme activity of β-1,3-1,4-glucanase from Paenibacillus sp. X4 by error-prone PCR and structural insights of mutated residues. Appl. Microbiol. Biotechnol. 101: 4073-4083.   DOI
42 Ozaki K, Sumitomo N, Ito S. 1991. Molecular cloning and nucleotide sequence of the gene encoding an endo-1,4-β-glucanase from Bacillus sp. KSM-330. J. Gen. Microbiol. 137: 2299-2305.   DOI
43 Ma L, Aizhan R, Wang X, Yi Y, Shan Y, Liu B, et al. 2020. Cloning and characterization of low-temperature adapted GH5-CBM3 endo-cellulase from Bacillus subtilis 1AJ3 and their application in the saccharification of switchgrass and coffee grounds. AMB Express. 10: 42.   DOI
44 Na HB, Jung WK, Jeong YS, Kim HJ, Kim SK, Kim J, et al. 2015. Characterization of a GH family 8 β-1,3-1,4-glucanase with distinctive broad substrate specificity from Paenibacillus sp. X4. Biotechnol. Lett. 37: 643-655.   DOI
45 Akita M, Kayatama K, Hatada Y, Ito S, Horikoshi K. 2005. A novel β-glucanase gene from Bacillus halodurans C-125. FEMS Microbiol. Lett. 248: 9-15.   DOI
46 Zhang G, Li S, Xue Y, Mao L, Ma Y. 2012. Effects of salts on activity of halophilic cellulase with glucomannanase activity isolated from alkaliphilic and halophilic Bacillus sp. BG-CS10. Extremophiles 16: 35-43.   DOI