• 제목/요약/키워드: Chitosan carrier

검색결과 46건 처리시간 0.025초

키토산의 치주조직 재생력에 대한 연구의 고찰: 조직계측학적 메타분석 (Study of chitosan's effects on periodontal tissue regeneration: a meta-analysis of the histomorphometry)

  • 양진혁;채경준;윤정호;정의원;이용근;조규성;채중규;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제38권1호
    • /
    • pp.7-14
    • /
    • 2008
  • Purpose: Chitosan & chitosan derivative(eg. membrane) have been studied in periodontal regeneration, and recently many studies of chitosan have reported good results. If chitosan's effects on periodontal regeneration are enhanced, we can use chitosan in many clinical and experimental fields. For this purpose, this study reviewed available literatures, evaluated comparable experimental models. Materials and Methods: Ten in vivo studies reporting chitosan's effects on periodontal tissue regeneration have been selected by use of the 'Pubmed' and hand searching. Results: 1. In Sprague Dawley rat calvarial defect models, amount of newly formed bone in defects showed significant differences between chitosan/chitosan-carrier/chitosan-membrane groups and control groups. 2. In beagle canine 1-wall intrabony defect models, amount of new cementum and new bone showed significant differences between chitosan/chitosan-membrane groups and control groups. The mean values of the above experimental groups were greater than the control groups. Conclusion: The results of this study have demonstrated that periodontal regeneration procedure using chitosan have beneficial effects, which will be substitute for various periodontal regenerative treatment area. One step forward in manufacturing process of chitosan membrane and in use in combination with other effective materials(eg. bone graft material or carrier) may bring us many chances of common use of chitosan in various periodontal area.

Effects of Chitosan Coating for Liposomes as an Oral Carrier

  • Lee, Chang-Moon;Kim, Dong-Woon;Lee, Ki-Young
    • 대한의생명과학회지
    • /
    • 제17권3호
    • /
    • pp.211-216
    • /
    • 2011
  • The chitosan-coated liposomes (chitosomes) were designed to improve the stability in the gastrointestinal (GI) tract and to enhance the efficacy for oral drug delivery of liposomes. The phosphatic acid (PA)-incorporated anionic liposomes were surface-coated with water soluble chitosan (WSC) by electro-ionic interaction. The shape of the chitosomes observed by transmission electron microscopy (TEM) was spherical in all the formulations and the coating layer by WSC could be founded through TEM images. The mean size and the zeta potential values of the chitosomes increased significantly with depending on the content of WSC added for coating the liposomes. The stability of the chitosomes in the GI tract was confirmed through the change of relative turbidity of the liposomal suspension. The plain liposomes (plasomes) suspension without adding WSC clearly showed the change of relatively turbidity in simulated gastric fluid (SGF), while the change degree of turbidity of the chitosomes in the SGF decreased as increasing of WSC content added for coating liposome. In the 5-CF release study from the plasomes and chitosomes, the plasomes released >90% of the initial 5-CF content at 4 h of release measurement. In contrast, the chitosomes released below 40% of initial content of 5-CF. In conclusion, these results indicate that the chitosomes can be used as a potential carrier for effective oral drug delivery.

Poly(D,L-lactide)를 외부 껍질로 하고 Alginate 또는 Chitosan을 내부 코어로 구성한 이중미립구 담체의 약물방출 특성 (Drug-release Properties of Double-layered Microspherical Carriers which Consist of Outer Shell of Poly(D,L-lactide) and Inner Core of Alginate or Chitosan)

  • 김자원;송민정;이상민;임소령;정수진;김홍성
    • 폴리머
    • /
    • 제36권6호
    • /
    • pp.699-704
    • /
    • 2012
  • 경구투여를 통한 친수성 약물의 방출조절을 위하여 이중층으로 된 고분자 담체를 설계하였다. 생체고분자인 alginate와 chitosan은 각각 극성 흡수성분으로, poly(D,L-lactide)는 소수성 피막으로, 그리고 theophylline과 diclofenac sodium은 모델 약물로 사용하였다. 담체는 지연방출과 이어지는 지속방출을 위하여 외부 껍질은 poly(D,L-lactide)로, 내부중심은 약물과 함께 알지네이트 또는 키토산으로 구성되어진 이중층의 미립구 담체로 성형하였다. 담체와 약물간의 극성 조합으로 인한 담체의 모폴로지와 약물방출 거동을 조사하였다. 담체와 약물 그리고 pH 환경의 상대적 극성이 약물방출 특성에 상당한 영향이 있음을 확인하였다.

Synthesis and Characterization of Lactobionic Acid Grafted Phenylalanyl-Glycyl-Chitosan

  • Li, He-Ping;Li, Shan;Wang, Zhou-Dong;Qin, Long
    • 대한화학회지
    • /
    • 제55권6호
    • /
    • pp.978-982
    • /
    • 2011
  • In order to enhance the target action of chitosan-based drug, this paper firstly prepared phenylalanyl-glycylchitosan (Phe-Gly-CS) by grafting the key intermediate, bromoacetyl-phenylalanine (BA-Phe) onto chitosan. Then the target sugar molecule, lactobionic acid (LA), was grafted to Phe-Gly-CS and the topic compound lactobionic acid grafted phenylalanyl-glycyl-chitosan (Phe-Gly-CS-LA) was finally obtained in a yield of 78.8%. The product were characterized by FTIR, MS and 1H NMR. The preparing condition of BA-Phe was optimized as follows: the best pH was 10-11, the optimum temperature was $-4^{\circ}C$, the reaction time was 1.5 h.

Poly(DL-lactide)로 피막된 키토산 유도체 매트릭스에서의 약물방출 (Drug Release by Poly(DL-lactide) Coated Chitosan Derivatives Matrices)

  • 차월석;나재운이동병
    • KSBB Journal
    • /
    • 제10권4호
    • /
    • pp.461-467
    • /
    • 1995
  • 본 연구에서는 약물 전달체(키토산, 키토산.엽, 술폰화키토산)에 prednisolone을 분산시켜 제조한 고분자 매트릭스를 poly (DL-lactide)로 피막을 형성시킨 후 pH 1.2와 pH 7.4 인산염 완충용액에서 약물 방출실험을 하였다. 약물 방출시간은 pH 1.2에서 보다 pH 7.4에서 더 지연되였으며 약물 전달체의 함유량이 증가함에 따라 약물의 방출시간도 지연되었다. 피막된 고분자 매트릭스의 종류에 따라 지연된 약물의 방출시간은 키토산의 경우가 가장 길었으 며, 술폰화키토산, 키토산.염의 순셔였다. Monolith IC 고분자 매트릭스에 비해 2배 정도의 약물의 방출 지연성을 보인 피막된 monolithic 고분자 매트럭스 가 방출조절형 제제로서 더 바람직한 것으로 관찰되었다. 이러한 제형들은 초기 급격한 약물 방출속도의 변화를 억 제 하는 sustained release pattern 제 제 임을 확인할 수 있었다.

  • PDF

Preparation of a Hydrophobized Chitosan Oligosaccharide for Application as an Efficient Gene Carrier

  • Son Sohee;Chae Su Young;Choi Changyong;Kim Myung-Yul;Ngugen Vu Giang;Jang Mi-Kyeong;Nah Jae-Woon;Kweon Jung Keoo
    • Macromolecular Research
    • /
    • 제12권6호
    • /
    • pp.573-580
    • /
    • 2004
  • To prepare chitosan-based polymeric amphiphiles that can form nanosized core-shell structures (nanopar­ticles) in aqueous milieu, chitosan oligosaccharides (COSs) were modified chemically with hydrophobic cholesterol groups. The physicochemical properties of the hydrophobized COSs (COSCs) were investigated by using dynamic light scattering and fluorescence spectroscopy. The feasibility of applying the COSCs to biomedical applications was investigated by introducing them into a gene delivery system. The COSCs formed nanosized self-aggregates in aqueous environments. Furthermore, the physicochemical properties of the COSC nanoparticles were closely related to the molecular weights of the COSs and the number of hydrophobic groups per COS chain. The critical aggregation concentration values decreased upon increasing the hydrophobicity of the COSCs. The COSCs effi­ciently condensed plasmid DNA into nanosized ion-complexes, in contrast to the effect of the unmodified COSs. An investigation of gene condensation, performed using a gel retardation assay, revealed that $COS6(M_n=6,040 Da)$ containing $5\%$ of cholesteryl chloroformate (COS6C5) formed a stable DNA complex at a COS6C5/DNA weight ratio of 2. In contrast, COS6, the unmodified COS, failed to form a stable COS/DNA complex even at an elevated weight ratio of 8. Furthermore, the COS6C5/DNA complex enhanced the in vitro transfection efficiency on Human embryonic kidney 293 cells by over 100 and 3 times those of COS6 and poly(L-lysine), respectively. Therefore, hydrophobized chitosan oligosaccharide can be considered as an efficient gene carrier for gene delivery systems.

Galactosylated Chitosan (GC)-graft-Poly(vinyl pyrrolidone) (PVP) as Hepatocyte-Targeting DNA Carrier: In Vitro Transfection

  • Park, In-Kyu;Jiang, Hu-Lin;Cook, Seung-Eun;Cho, Myung-Haing;Kim, Su-Il;Jeong, Hwan-Jeong;Akaike, Toshihiro;Cho , Chong-Su
    • Archives of Pharmacal Research
    • /
    • 제27권12호
    • /
    • pp.1284-1289
    • /
    • 2004
  • Galactosylated chitosan-graft-poly(vinyl pyrrolidone) (GCPVP) was synthesized and characterized for hepatocyte-targeting gene carrier. GCPVP itself as well as GCPVP/DNA complex had negligible cytotoxicity regardless of the concentration of GCPVP and the charge ratio, but GCPVP/DNA complex had slightly cytotoxic effect on HepG2 cells only in the case of the higher charge ratio and 20 mM of $Ca^{2+}$ concentration used. Through the confocal laser scanning microscopy, it is shown that the endocytosis by interaction between galactose ligands of GCPVP and ASGPR of the hepatocytes was the major route of transfection of GCPVP/F-plasmid complexes.

Chemical Modification of Chitosan as Gene Carriers In Vitro and In Vivo

  • Kim, Tae-Hee;Jin, Hua;Kim, Hyun-Woo;Cho, Myung-Haing;Nah, Jae-Woon;Cho, Chong-Su
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.178-178
    • /
    • 2006
  • Chitosan has been investigated as a non-viral vector because it has several advantages such as biocompatibility, biodegradability and low toxicity with high cationic potential. However, low specificity and low transfection efficiency of chitosan as a DNA carrier need to be overcome for clinical trials. In this study, chemical modification for enhancement of cell specificity and transfection efficiency was investigated. Also, the chitosan derivative formulations in vivo were included.

  • PDF

고분자 물질 도포가 미생물 부착과 생물막 성장에 미치는 영향 (Effect of Polymer Coating on the Initial Microorganism Attachment and the Biofilm Growth)

  • 박영식;송승구
    • 한국환경보건학회지
    • /
    • 제24권2호
    • /
    • pp.104-109
    • /
    • 1998
  • The objective of this study was to examine the effect of polymer coating on the initial microorganism attachment and the biofilm growth. Such as nonion(polyacrylamine), anion(CMC-Na) and cation polymer coagulant(chitosan and PEI) were used for coating material of the support carrier(acryl plate). When polymer coagulant was coated with 5, 10, 20, 35, 50, 100 and 200 mg/l on the surface of acryl plate, initial microorganism attachment increased and optimum concentration for the attachment was 35 mg/l. Biofilm growth experiments were conducted with the substrate loading of 12.7gSCOD/$m^2\cdot$ day using RBC. The polymer coagulants such as CMC-Na, polyacrylamide, PEI and chitosan coating on the acryl plate facilitated the biofilm growth of microorganisms. Until the biofilm dry weight grows up to 0. 0038g/cm$^2$, biofilm growth on the plate coated with cation polymer like chitosan was better than that on the coated plate of nonion(polyacrylamine), anion(CMC-Na) polymer coagulant.

  • PDF

Colon Delivery of Prednisolone Based on Chitosan Coated Polysaccharide Tablets

  • Park, Hyun-Sun;Lee, Jue-Yeon;Cho, Sun-Hye;Baek, Hyon-Jin;Lee, Seung-Jin
    • Archives of Pharmacal Research
    • /
    • 제25권6호
    • /
    • pp.964-968
    • /
    • 2002
  • Colon drug delivery is advantageous in the treatment of colonic disease and oral delivery of drugs unstable or suceptible to enzymatic degradation in upper GI tract. In this study, multilayer coated system that is resistant to gastric and small intestinal conditions but can be easily degraded by colonic bacterial enzymes was designed to achieve effective colon delivery of prednisolone. Variously coated tablets containing prednisolone were fabricated using chitosan and cellulose acetate phthalate (CAP) as coating materials. Release aspects of prednisolone in simulated gastrointestinal fluid and rat colonic extracts (CERM) were investigated. Also, colonic bacterial degradation study of chitosan was performed in CERM. From these results, a three layer (CAP/Chitosan/CAP) coated system exhibited gastric and small intestinal resistance to the release of prednisolone in vitro most effectively. The rapid increase of prednisolone in CERM was revealed as due to the degradation of the chitosan membrane by bacterial enzymes. The designed system could be used potentially used as a carrier for colon delivery of prednisolone by regulating drug release in stomach and the small intestine.