• Title/Summary/Keyword: Chirp Function

Search Result 29, Processing Time 0.029 seconds

Simultaneous Multiple Transmit Focusing Using Orthogonal Weighted Linear FM Chirp (가중된 직교 선형 FM신호를 이용한 송신 동시 다중 빔집속 기반의 초음파 영상 기법)

  • 정영관;송태경
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.155-158
    • /
    • 2001
  • A new method for simultaneous multiple transmit focusing using orthogonal weighted FM chirp is proposed. Weighted chirp signals focused at different depths are transmitted at the same time. These chirp signals are mutually orthogonal in the approximate sense that the autocorrelation function of each signal has a narrow mainlobe width and low sidelobe levels, and the crosscorrellation function of any pair of the signals has smaller values than the sidelobe levels of each autocorrelation function. This means that each weighted chirp signal can be separately compressed into a short pulse, focused individually and combined with other focused beams to form a frame of image. Theoretically, any two chirp signals defined in two nonoverlapped frequency bands are mutually orthogonal. In the present work, however, a fractional overlap of adjacent frequency bands, by up to 25%, were permitted to design more chirp signals within a given transducer bandwidth. The crosscorrelation values due to the frequency overlap could be reduced by alternating the direction of frequency sweep of the adjacent chirp signals. The simulation results show that this method can improve the lateral resolution of image without sacrifice in the frame rate compared with the conventional pulse system.

  • PDF

Matching Pursuit Approach for Guided Wave-based Damage Inspection (유도 초음파 이용 결함 진단을 위한 정합추적 기법)

  • Hong, Jin-Chul;Sun, Kyung-Ho;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.382-387
    • /
    • 2005
  • For successful guided-wave damage inspection, the appropriate signal processing of measured wave signals is very important. The objective of this paper is to introduce an efficient signal processing technique especially suitable for the guided-waves used for damage detection. The key idea of this technique is to model guided-waves by chirp functions of special form considering the dispersion phenomenon. To determine the parameter of the chirp functions simulating guided-waves, the matching pursuit algorithm is employed. The damage information in waveguides can be extracted by pulse-characterizing parameters. The effectiveness of present method is checked with the guided wave-based damage inspection.

Matching Pursuit Approach for Guided Wave-Based Damage Inspection (유도 초음파 이용 결함 진단을 위한 정합추적 기법)

  • Hong, Jin-Chul;Sun, Kyung-Ho;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.615-618
    • /
    • 2004
  • For successful guided-wave damage inspection, the appropriate signal processing of measured wave signals is very important. The objective of this paper is to introduce an efficient signal processing technique especially suitable for the guided-waves used for damage detection. The key idea of this technique is to model guided-waves by chirp functions of special form considering the dispersion phenomenon. To determine the parameter of the chirp functions simulating guided-waves, the matching pursuit algorithm is employed. The damage information in waveguides can be extracted by pulse-characterizing parameters. The effectiveness of present method is checked with the longitudinal wave-based damage inspection.

  • PDF

A Closed-Form BER Expression for Overlap-Based CSS System Design (오버랩 기반 CSS 시스템 설계를 위한 닫힌꼴 비트 오류율 표현)

  • Yoon, Tae-Ung;Lee, Young-Yoon;Lee, Myung-Soo;Song, Iick-Ho;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.469-475
    • /
    • 2009
  • Overlap is one of the techniques for increasing bit rate in chirp spread spectrum (CSS). More overlaps can offer higher data throughput; however, they may cause more intersymbol interference (ISI) at the same time, resulting in serious bit error rate (BER) performance degradation. Thus, the number of overlaps should be decided according to the required BER performance. In this paper, we derive a closed form expression for BER of the overlap-based CSS system, exploiting the approximated Gaussian Q function. The derived BER expression includes the number of overlaps as a parameter, and thus, would be very useful in determining the number of overlaps for a specified BER. The numerical results demonstrate that the BER derived in a closed form closely agrees with the simulated BER.

Overlap-Based Chirp Spread Spectrum Transmission Scheme for Maritime Multipath Environment (해양 다중 경로 환경에 알맞은 오버랩 기반 처프 확산 대역 전송 기법)

  • Chae, Keunhong;Lee, Seong Ro;Yoon, Seokho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1124-1131
    • /
    • 2014
  • The chirp spread spectrum (CSS) technique that transmits data signal by using a chirp signal is often used for maritime wireless communication systems such as sound detection radar systems for submarines. However, maritime multipath environment could reduce the data rate of the CSS system. To tackle the problem, an overlap-based CSS transmission scheme is proposed and analyzed in this paper: Based on the approximated Gaussian Q function, we derive a closed form expression of the bit error rate (BER) of the proposed overlap-based CSS system and investigate the mathematical relationship between the number of overlaps and the intersymbol interference (ISI).

Wideband Signal Generator Implementation for Earth Observation Satellite (지구관측위성 광대역 신호 발생기 구현)

  • Kim, Joong-Pyo;Ryu, Sang-Burm;Lim, Won-Gyu;Lee, Sang-Kon
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.2
    • /
    • pp.88-93
    • /
    • 2013
  • The wideband chirp signal generator to enhance the resolution of synthetic aperture radar of obtaining the earth observation image is needed. This paper deals with designing, manufacturing and testing the wideband digital chirp signal generator having high resolution for LEO earth observation satellite. The wideband digital chirp signal generator is implemented with the memory-map based structure which is mostly applied in the satellite, and consists of the digital module to generate the digital chirp signal and the RF module to perform the quadrature modulation. The I/Q signals stored in the memory of the digital module are D/A converted and delivered to be quadrature modulated with the reference signal of 1275 MHz in the RF module. Furthermore, the test bench and GUI to validate the signal generator function are also developed. It is found that the requirement of 144 MHz bandwidth for the digital chirp signal generator is well met. Finally it is noteworthy that the distortion occurred in the chirp signal generator was compensated by the pre-distortion compensation.

Estimation of Fault Location on a Power Line using the Time-Frequency Domain Reflectometry (절연전선 결함 위치 추정에 대한 시간-주파수 영역 반사파 계측법의 적용)

  • Doo, Seung-Ho;Kwak, Ki-Seok;Park, Jin-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.268-275
    • /
    • 2008
  • In this paper, we introduce a new method for detecting and estimating faults on a power line using the time-frequency domain reflectometry system. The system rests upon time-frequency signal analysis and uses a chirp signal which is multiplied by Gaussian envelope. The chirp signal is used as a reference signal, and we can get the reflected signal from a fault on a wire. To detect and estimate faults, we analyze the reflected signal by Wigner time-frequency distribution function and normalized time-frequency cross correlation function. In this paper we design an optimal reference signal for power line and implement a system for estimating fault distance on a power line with the TFDR implemented by PXI equipments. This approach is verified by some experiments with HIV 2.25mm power lines.

Simultaneous Multiple Transmit Focusing Method with Orthogonal Chirp Signal for Ultrasound Imaging System (초음파 영상 장치에서 직교 쳐프 신호를 이용한 동시 다중 송신집속 기법)

  • 정영관;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.49-60
    • /
    • 2002
  • Receive dynamic focusing with an array transducer can provide near optimum resolution only in the vicinity of transmit focal depth. A customary method to increase the depth of field is to combine several beams with different focal depths, with an accompanying decrease in the frame rate. In this Paper. we Present a simultaneous multiple transmit focusing method in which chirp signals focused at different depths are transmitted at the same time. These chirp signals are mutually orthogonal in a sense that the autocorrelation function of each signal has a narrow mainlobe width and low sidelobe levels. and the crossorelation function of any Pair of the signals has values smaller than the sidelobe levels of each autocorrelation function. This means that each chirp signal can be separated from the combined received signals and compressed into a short pulse. which is then individually focused on a separate receive beamformer. Next. the individually focused beams are combined to form a frame of image. Theoretically, any two chirp signals defined over two nonoverlapped frequency bands are mutually orthogonal In the present work. however, a tractional overlap of adjacent frequency bands is permitted to design more chirp signals within a given transducer bandwidth. The elevation of the rosscorrelation values due to the frequency overlap could be reduced by alternating the direction of frequency sweep of the adjacent chirp signals We also observe that the Proposed method provides better images when the low frequency chirp is focused at a near Point and the high frequency chirp at a far point along the depth. better lateral resolution is obtained at the far field with reasonable SNR due to the SNR gain in Pulse compression Imaging .

Inversion of Acoustical Properties of Sedimentary Layers from Chirp Sonar Signals (Chirp 신호를 이용한 해저퇴적층의 음향학적 특성 역산)

  • 박철수;성우제
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.8
    • /
    • pp.32-41
    • /
    • 1999
  • In this paper, an inversion method using chirp signals and two near field receivers is proposed. Inversion problems can be formulated into the probabilistic models composed of signals, a forward model and noise. Forward model to simulate chirp signals is chosen to be the source-wavelet-convolution planewave modeling method. The solution of the inversion problem is defined by a posteriori pdf. The wavelet matching technique, using weighted least-squares fitting, estimates the sediment sound-speed and thickness on which determination of the ranges for a priori uniform distribution is based. The genetic algorithm can be applied to a global optimization problem to find a maximum a posteriori solution for determined a priori search space. Here the object function is defined by an L₂norm of the difference between measured and modeled signals. The observed signals can be separated into a set of two signals reflected from the upper and lower boundaries of a sediment. The separation of signals and successive applications of the genetic algorithm optimization process reduce the search space, therefore improving the inversion results. Not only the marginal pdf but also the statistics are calculated by numerical evaluation of integrals using the samples selected during importance sampling process of the genetic algorithm. The examples applied here show that, for synthetic data with noise, it is possible to carry out an inversion for sedimentary layers using the proposed inversion method.

  • PDF

IRF performance prediction by analyzing of amplitude and phase errors for the wideband Chirp signal (광대역 첩 신호의 진폭 및 위상오차 분석을 통한 IRF 성능 분석)

  • Kim, Dong-Sik;Kim, Jong-Pil;Lee, Jong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.2
    • /
    • pp.131-138
    • /
    • 2016
  • In this paper, we studied the IRF performances of the chirp signal used in the SAR system. The most important factors that degrade IRF performances are amplitude and phase errors. Each factor can be represented to linear, quadratic, random and ripple terms. That can be extracted by a quadratic polynomial curve fitting of chirp waveform. We analyzed the IRF performances by the error terms and supposed the minimum value of RF non-linearity to meet the specification of the PSLR and ISLR.