• Title/Summary/Keyword: Chiral Stationary Phase

Search Result 104, Processing Time 0.028 seconds

Enantioseparation of Neutral Compounds on a Quinine Carbamate-Immobilized Zirconia in Reversed-Phase Capillary Electrochromatography

  • Lee, Mun-Rak;Gwon, Ju-Rim;Park, Jung-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.82-86
    • /
    • 2010
  • Quinine (QN) is a weak anion-exchange type chiral selector and QN-based silica stationary phases have been widely used for enantioseparation of acidic chiral analytes in HPLC and recently in CEC. In this work we report enantioseparation of non-acidic chiral analytes on a quinine carbamate-immobilized zirconia (QNZ) in reversed-phase (RP) CEC. Influences of pH, composition of the buffer, acetonitrile content and the applied voltage on enantioseparation were examined. Enantiomers of the analytes investigated are well separated in acetonitrile/phosphate buffer mobile phases. Separation data on QNZ were compared to those on QN-bonded silica (QNS). Retention was longer but better enantioselectivity and resolution were obtained on QNZ than QNS.

Enantioseparation of Racemic 1,1'Binaphthyl-2,2'diamine by Preparative Liquid Chromatography

  • Ryoo, Jae-Jeong;Kwon, Woo-Jeong;Kim, Tae-Hyuk;Lee, Kwang-Pill;Choi, Seong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1336-1340
    • /
    • 2004
  • The same kind of chiral stationary phase with a commercialized chiral column was used to make preparative chiral columns and was applied to resolve racemic N-acetyl-1-naphthylethylamide (3) by preparative liquid chromatography. An improved chromatographic condition to resolve racemic 3 on the CSP was examined by changing flow rate and kind of the mobile phase and the sample injection volume. The optimized separation conditions were applied to resolve racemic 1,1'-Binaphthyl-2,2'-diamine(4).

PREPARATION AND CHARACTERIZATION OF THE CHIRAL STATIONARY PHASE BASED ON THE CHITOSAN

  • Son, Seung-Hee;Jonggeon Jegal;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.103-105
    • /
    • 2003
  • A chiral stationary phase (CSP) was synthesized by the modification of the chitosan using N-nicotinoyl phenylalanine and 3, 5-dimethylphenylisocyanate . The CSP based on the chitosan was then characterized in terms of their chemical structure and physical properties. To test its performance as a CSP, the silica powder with 5 ${\mu}{\textrm}{m}$ of diameter were coated with the CSP to pack a column for High Performance Liquid Chromatograph (HPLC). Using the packed column, several racemates were tried to separate under various separation conditions with different compositions of eluents.

  • PDF

Prediction on the Chiral Behaviors of Drugs with Amine Moiety on the Chiral Cellobiohydrolase Stationary Phase Using a Partial Least Square Method

  • Choi, Sun-Ok;Lee, Seok-Ho;Park Choo , Hea-Young
    • Archives of Pharmacal Research
    • /
    • v.27 no.10
    • /
    • pp.1009-1015
    • /
    • 2004
  • Quantitative Structure-Resolution Relationship (QSRR) using the Comparative Molecular Field Analysis (CoMFA) software was applied to predict the chromatographic behaviors of chiral drugs with an amine moiety on the chiral cellobiohydrolase (CBH) columns. As a result of the Quantitative CoMFA-Resolution Relationship study, using the partial least square method, prediction of the behavior of drugs with amine moiety upon chiral separation became possible from their three dimensional molecular structures. When a mixed mobile phase of 10 mM aqueous phosphate buffer (pH 7.0) - isopropanol (95 : 5) was employed, the best Quantitative CoMFA-Resolution Relationship, derived from the study, provided a cross-validated $q^2$ = 0.933, a normal $r^2$ = 0.995, while the best Quantitative CoMFA-Separation Factor Relationship, also derived from the study, yielded a cross-validated $q^2$ = 0.939, a normal $r^2$ = 0.991. When all of these results are considered, this QSRR-CoMFA analysis appears to be a very useful tool for the preliminary prediction on the chromatographic behaviors of drugs with an amine moiety inside chiral CBH columns.

Liquid Chromatographic Resolution of Racemic $\alpha$-Amino Acid Derivatives on an Improved $\pi$-Acidic Chiral Stationary Phase Derived from (S)-Leucine

  • 현명호;이승준;류재정
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1105-1109
    • /
    • 1998
  • A chiral stationary phase derived from (S)-N-(3,5-dinitrobenzoyl)leucine N-phenyl N-alkyl amide (CSP 2) was applied in separating the two enantiomers of various π-basic aromatic derivatives of leucine N-propyl amide in order to evaluate π-basic aromatic groups as an effective derivatizing group for the resolution of a-amino acids. Subsequently N-(3,5-dimethoxybenzoyl) group was found to be very effective as a π-basic aromatic derivatizing group. Based on these results, N-(3,5-dimethoxybenzoyl) derivatives of various a-amino N-propyl amides, N,N-diethyl amides and esters were resolved on the CSP derived from (S)-N-(3,5-dinitrobenzoyl) leucine N-phenyl N-alkyl amide (CSP 2) and the resolution results were compared with those on the CSP derived from (S)-N-(3,5-dinitrobenzoyl)leucine N-alkyl amide (CSP 1). The enantioselectivities exerted by CSP 2 were much greater than those exerted by CSP 1. In addition, racemic N-(3,5-dimethoxybenzoyl)-a-mino N,Ndiethyl amides were resolved much better than the corresponding N-(3,5-dimethoxybenzoyl)-a-mino N-propyl amides and esters on both CSPs. Based on these results, a chiral recognition mechanism utilizing the π-π donor-acceptor interaction and the two hydrogen bondings between the CSP and the analyte was proposed.

Chiral Separation on Sulfonated Cellulose Tris(3,5-dimethylphenylcarbamate)-coated Zirconia Monolith by Capillary Electrochromatography

  • Lee, Jeong-Mi;Jang, Myung-Duk;Park, Jung-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2651-2656
    • /
    • 2012
  • Sulfonated cellulose tris(3,5-dimethylphenylcarbamate) (SCDMPC)-coated zirconia monolith (ZM) was used as the chiral stationary phase in capillary electrochromatography for separation of enantiomers of ten chiral compounds in acetonitrile (ACN)-phosphate buffer mixtures as the eluent. Influences of the ACN content, buffer concentration and pH on chiral separation have been investigated. Separation data on SCDMPC-ZM have been compared with those on CDMPC-ZM. Resolution factors were better on SCDMPC-ZM than CDMPC-ZM while retention factors were in general shorter on the former than the latter. Best chiral resolutions on SCDMPC-ZM were obtained with the eluent of 50% ACN containing 50 mM phosphate at pH around 4.

Determination of methamphetamine and amphetamine enantiomers in human urine by chiral stationary phase liquid chromatography-tandem mass spectrometry

  • Sim, Yeong Eun;Ko, Beom Jun;Kim, Jin Young
    • Analytical Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.163-172
    • /
    • 2019
  • Methamphetamine (MA) is currently the most abused illicit drug in Korea and its major metabolite is amphetamine (AP). As MA exist as two enantiomers with the different pharmacological properties, it is necessary to determine their respective amounts in a sample. Thus a chiral stationary phase liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed for identification and quantification of d-MA, l-MA, d-AP, and l-AP in human urine. Urine sample ($200{\mu}L$) was diluted with pure water and purified using solid-phase extraction (SPE) cartridge. A $5-{\mu}L$ aliquot of SPE treated sample solution was injected into LC-MS/MS system. Chiral separation was carried out on the Astec Chirobiotic V2 column with an isocratic elution for each enantiomer. Identification and quantification of enantiomeric MA and AP was performed using multiple reaction monitoring (MRM) detection mode. Linear regression with a $1/x^2$ as the weighting factor was applied to generate a calibration curve. The linear ranges were 25-1000 ng/mL for all compounds. The intra- and inter-day precisions were within 3.6 %, while the intra- and inter-day accuracies ranged from -5.4 % to 11.8 %. The limits of detection were 2.5 ng/mL (d-MA), 3.5 ng/mL (l-MA), 7.5 ng/mL (d-AP), and 7.5 ng/mL (l-AP). Method validation parameters such as selectivity, matrix effect, and stability were evaluated and met acceptance criteria. The applicability of the method was tested by the analysis of genuine forensic urine samples from drug abusers. d-MA is the most common compound found in urine and mainly used by abusers.