DOI QR코드

DOI QR Code

Enantioseparation of Neutral Compounds on a Quinine Carbamate-Immobilized Zirconia in Reversed-Phase Capillary Electrochromatography

  • Published : 2010.01.20

Abstract

Quinine (QN) is a weak anion-exchange type chiral selector and QN-based silica stationary phases have been widely used for enantioseparation of acidic chiral analytes in HPLC and recently in CEC. In this work we report enantioseparation of non-acidic chiral analytes on a quinine carbamate-immobilized zirconia (QNZ) in reversed-phase (RP) CEC. Influences of pH, composition of the buffer, acetonitrile content and the applied voltage on enantioseparation were examined. Enantiomers of the analytes investigated are well separated in acetonitrile/phosphate buffer mobile phases. Separation data on QNZ were compared to those on QN-bonded silica (QNS). Retention was longer but better enantioselectivity and resolution were obtained on QNZ than QNS.

Keywords

References

  1. Capillary Electrochromatography; J. Chromatogr. Library, Vol. 62, Deyl, Z., Svec, F., Eds.; Elsevier: Amsterdam, 2001.
  2. Capillary Electrochromatography; Bartle, K. D., Meyers, P., Eds.; Royal Society of Chemistry Monographs, Royal Society of Chemistry: London, 2001.
  3. Pettersson, C. J. Chromatogr. 1984, 316, 553. https://doi.org/10.1016/S0021-9673(00)96183-1
  4. Pettersson, C.; Schill, G. J. Liq. Chromatogr. 1986, 9, 269. https://doi.org/10.1080/01483918608076638
  5. Rosini, C.; Altemura, P.; Pini, D.; Bertucci, C.; Zullino, G.; Salvadori, P. J. Chromatogr. 1985, 348, 79. https://doi.org/10.1016/S0021-9673(01)92441-0
  6. Salvadori, P.; Rosini, C.; Pini, D.; Bertucci, C.; Uccello-Barretta, G. Chirality 1989, 1, 161. https://doi.org/10.1002/chir.530010210
  7. Lammerhofer, M.; Lindner, W. GIT Special: Chromatogr. Int. 1996, 40, 16.
  8. Lammerhofer, M.; Lindner, W. J. Chromatogr. A 1996, 741, 33. https://doi.org/10.1016/0021-9673(96)00137-9
  9. Lammerhofer, M.; Maier, N. M. Lindner, W. Am. Lab. 1998, 30, 71.
  10. Lammerhofer, M.; Di Eugenio, P.; Molnar, I.; Lindner, W. J. Chromatogr. B 1997, 689, 123. https://doi.org/10.1016/S0378-4347(96)00366-0
  11. Mandl, A.; Nicoletti, L.; Lämmerhofer, M.; Lindner, W. J. Chromatogr. A 1999, 858, 1. https://doi.org/10.1016/S0021-9673(99)00803-1
  12. Kleidernigg, O. P.; Lämmerhofer, M.; Lindner, W. Enantiomer 1996, 1, 387.
  13. Piette, V.; Lammerhofer, M.; Bischoff, K.; Lindner, W. Chirality 1997, 9, 157. https://doi.org/10.1002/(SICI)1520-636X(1997)9:2<157::AID-CHIR15>3.0.CO;2-M
  14. Piette, V. Ph.D. Thesis, Facultes Universitaires Notre-Damede la Paix, Namur. 1999.
  15. Franco, P.; Lämmerhofer, M.; Klaus, P.; Lindner, W. J. Chromatogr. A 2000, 869, 111. https://doi.org/10.1016/S0021-9673(99)00877-8
  16. Franco, P.; Klaus, P.; Minguillon, G.; Lindner, W. Chirality 2001, 13, 177. https://doi.org/10.1002/chir.1017
  17. Peter, A.; Torok, G.; Toth, G.; Lindner, W. J. High Resolut. Chromatogr. 2000, 23, 628. https://doi.org/10.1002/1521-4168(20001101)23:11<628::AID-JHRC628>3.0.CO;2-2
  18. Peter, A. J. Chromatogr. A 2002, 955, 141. https://doi.org/10.1016/S0021-9673(02)00192-9
  19. Piette, V.; Lämmerhofer, M.; Lindner, W.; Crommen, J. J. Chromatogr. A 2003, 987, 421. https://doi.org/10.1016/S0021-9673(02)01465-6
  20. Krawinkler, K. H.; Maier, N. M.; Ungaro, R.; Sansone, F.; Casnati, A.; Lindner, W. Chirality 2003, 15, S15.
  21. Preinerstorfer, B.; Bicker, W.; Lindner, W.; Lämmerhofer, M. J. Chromatogr. A 2004, 1044, 187. https://doi.org/10.1016/j.chroma.2004.04.078
  22. Lammerhofer, M.; Tobler, E.; Zarbl, E.; Lindner, W.; Svec, F.; Frechet, J. M. J. Electrophoresis 2003, 24, 2986. https://doi.org/10.1002/elps.200305527
  23. Munoz, O. L. S.; Hernandez, E. P.; Lammerhofer, M.; Lindner, W.; Kenndler, E. Electrophoresis 2003, 24, 390. https://doi.org/10.1002/elps.200390049
  24. Tobler, E.; Lammerhofer, M.; Mancini, G.; Lindner, W. Chirality 2001, 13, 64.
  25. Lammerhofer, M.; Tobler, E.; Lindner, W. J. Chromatogr. A 2000, 887, 421. https://doi.org/10.1016/S0021-9673(99)01329-1
  26. Lammerhofer, M.; Lindner, W. J. Chromatogr. A 1999, 839, 167. https://doi.org/10.1016/S0021-9673(99)00096-5
  27. Lammerhofer, M.; Lindner, W. J. Chromatogr. A 1998, 829, 115. https://doi.org/10.1016/S0021-9673(98)00824-3
  28. Maier, N. M.; Nicoletti, L.; Lammerhofer, M.; Lindner, W. Chirality 1999, 11, 522. https://doi.org/10.1002/(SICI)1520-636X(1999)11:7<522::AID-CHIR2>3.0.CO;2-U
  29. Steffeck, R. J.; Zelechonok, Y.; Gahm, K. H. J. Chromatogr. A 2002, 947, 301. https://doi.org/10.1016/S0021-9673(01)01604-1
  30. Hyun, M. H.; Tan, G.; Xue, J. Y. J. Chromatogr. A 2005, 1097, 188. https://doi.org/10.1016/j.chroma.2005.10.036
  31. Kamlet, M. J.; Abboud, J. L. M.; Taft, R. W. Prog. Phys. Org. Chem. 1981, 13, 485. https://doi.org/10.1002/9780470171929.ch6
  32. Nawrocki, J.; Dunlap, C. J.; Carr, P. W.; Blackwell, J. A. Biotechnol. Prog. 1994, 10, 561. https://doi.org/10.1021/bp00030a001
  33. Jackson, P. T.; Carr, P. W. Chemtech 1998, 28, 29.
  34. Nawrocki, J.; Rigney, M. P.; McCormick, A.; Carr, P. W. J. Chromatogr. A 1993, 657, 229. https://doi.org/10.1016/0021-9673(93)80284-F
  35. Xie, M.-J.; Feng, Y.-Q.; Da, S.-L.; Meng, D.-Y.; Ren, L.-W. Anal. Chim. Acta 2001, 428, 255. https://doi.org/10.1016/S0003-2670(00)01228-9
  36. Xia, D.; Feng, Y.-Q.; Da, S.-L. J. Liq. Chromatogr. Rel. Technol. 2001, 24, 1881. https://doi.org/10.1081/JLC-100104432
  37. Tsuda, T.; Kitagawa, S.; Munesue, M. JP 2001235459 (2001).
  38. Crosnier de Bellaistre, M.; Mathieu, O.; Randon, J.; Rocca, J.-L. J. Chromatogr. A 2002, 971, 199. https://doi.org/10.1016/S0021-9673(02)01001-4
  39. Randon, J.; Crosnier de Bellaistre, M.; Rocca, J.-L. Chromatographia 2003, 57, S/355. https://doi.org/10.1007/BF02492128
  40. Randon, J.; Crosnier de Bellaistre, M.; Rocca, J.-L. Actualite Chim. 2005, 283, 36.
  41. Randon, J.; Huguet, S.; Piram, A.; Puy, G.; Demesmay, C.; Rocca, J.-L. J. Chromatogr. A 2006, 1109, 19. https://doi.org/10.1016/j.chroma.2005.12.044
  42. Crosnier de Bellaistre, M.; Randon, J.; Rocca, J.-L. Electrophoresis 2006, 27, 736. https://doi.org/10.1002/elps.200500341
  43. Shi, Z.-G.; Feng, Y.-Q.; Xu, L.; Zhang, M.; Da, S.-L. Talanta 2004, 63, 593. https://doi.org/10.1016/j.talanta.2003.11.030
  44. Kim, I. W.; Kwon, S. H.; McNeff, C. V.; Carr, P. W.; Jang, M. D.; Park, J. H. Bull. Korean Chem. Soc. 2006, 27, 589. https://doi.org/10.5012/bkcs.2006.27.4.589
  45. Park, J. H.; Lee, J. W.; Kwon, S. H.; Cha, J. S.; Carr, P. W.; McNeff, C. V. J. Chromatogr. A 2004, 1050, 151. https://doi.org/10.1016/j.chroma.2004.08.027
  46. Park, J. H.; Lee, J. W.; Song, Y. T.; Ra, C. S.; Cha, J. S.; Ryoo, J. J.; Lee, W.; Kim, I. W.; Jang, M. D. J. Sep. Sci. 2004, 27, 977. https://doi.org/10.1002/jssc.200301713
  47. Xiang, Y.; Yan, B.; McNeff, C. V.; Carr, P. W.; Lee, M. L. J. Chromatogr. A 2003, 1002, 71. https://doi.org/10.1016/S0021-9673(03)00733-7
  48. Krause, K.; Girod, M.; Chankvetadze, B.; Blaschke, G. J. Chromatogr. A 1999, 837, 51. https://doi.org/10.1016/S0021-9673(99)00075-8
  49. Unger, K. K. Porous Silica; J. Chromatogr. Library, Vol. 16, Elsevier: Amsterdam, 1979.
  50. Bowser, M.; Bebault, G. M.; Peng, X.; Chen, D. D. Y. Electrophoresis 1997, 18, 2928. https://doi.org/10.1002/elps.1150181534
  51. Gagliardi, L. G.; Castells, C. B.; Rafols, C.; Rosés, M.; Bosch, E. J. Chem. Eng. Data 2007, 52, 1103. https://doi.org/10.1021/je700055p
  52. Thompson, J. W.; Kaiser, T. J.; Jorgenson, J. W. J. Chromatogr. A 2006, 1134, 201. https://doi.org/10.1016/j.chroma.2006.09.006
  53. Krause, K.; Chankvetadze, B.; Okamoto, Y.; Blaschke, G. J. Microcol. Sep. 2000, 12, 398. https://doi.org/10.1002/1520-667X(2000)12:7<398::AID-MCS3>3.0.CO;2-6
  54. Rathore, A. S. Electrophoresis 2002, 23, 3827. https://doi.org/10.1002/elps.200290004

Cited by

  1. Enantioselective capillary electrochromatography: Recent developments and new trends vol.32, pp.19, 2011, https://doi.org/10.1002/elps.201100009
  2. Chiral Separation on Sulfonated Cellulose Tris(3,5-dimethylphenylcarbamate)-coated Zirconia Monolith by Capillary Electrochromatography vol.33, pp.8, 2012, https://doi.org/10.5012/bkcs.2012.33.8.2651
  3. Zirconia-Based Stationary Phases for Chiral Separation: Mini Review vol.45, pp.1, 2012, https://doi.org/10.1080/00032719.2011.582553
  4. Chiral Separation of Basic Compounds on Sulfated β-Cyclodextrin-Coated Zirconia Monolith by Capillary Electrochromatography vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1809
  5. Chiral separation of basic compounds on a cellulose 3,5-dimethylphenylcarbamate-coated zirconia monolithin basic eluents by capillary electrochromatography vol.1218, pp.37, 2011, https://doi.org/10.1016/j.chroma.2011.06.101
  6. Enantiomer separations of basic chiral compounds by capillary electrochromatography on a phosphated β-cyclodextrin-modified zirconia monolith vol.1339, pp.None, 2010, https://doi.org/10.1016/j.chroma.2014.03.008