• 제목/요약/키워드: Chip thickness

검색결과 274건 처리시간 0.033초

Fabrication of 2-layer Flexible Copper Clad Laminate by Vacuum Web Coater with a Low Energy Ion Source for Surface Modification (저 에너지 표면 개질 이온원이 설치된 진공 웹 공정을 이용한 2층 flexible copper clad laminate 제작)

  • Choi, Hyoung-Wook;Park, Dong-Hee;Choi, Won-Kook
    • Korean Journal of Materials Research
    • /
    • 제17권10호
    • /
    • pp.509-515
    • /
    • 2007
  • In order to fabricate adhesiveless 2-layer flexible copper clad laminate (FCCL) used for COF (chip on film) with high peel strength, polyimide (PI; Kapton-EN, $38\;{\mu}m$) surface was modified by reactive $O_2^+$ and $N_2O^+$ ion beam irradiation. 300 mm-long linear electron-Hall drift ion source was used for ion irradiation with ion current density (J) higher than $0.5\;mA/cm^2$ and energy lower than 200 eV. By vacuum web coating process, PI surface was modified by linear ion source and then 10-20 nm thick Ni-Cr and 200 nm thick Cu film were in-situ sputtered as a tie layer and seed layer, respectively. Above this sputtered layer, another $8-9{\mu}m$ thick Cu layer was grown by electroplating and subsequently acid and base resistance and thermal stability were tested for examining the change of peel strength. Peel strength for the FCCLs treated by both $O_2^+$ and $N_2O^+$ ion irradiation showed similar magnitudes and increased as the thickness of tie layer increased. FCCL with Cu (200 nm)/Ni-Cr (20 nm)/PI structure irradiated with $N_2O^+$ at $1{\times}10^{16}/cm^2$ ion fluence was proved to have a strong peel strength of 0.73 kgf/cm for as-received and 0.34 kgf/cm after thermal test.

A Study of Warpage Analysis According to Influence Factors in FOWLP Structure (FOWLP 구조의 영향 인자에 따른 휨 현상 해석 연구)

  • Jung, Cheong-Ha;Seo, Won;Kim, Gu-Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • 제17권4호
    • /
    • pp.42-45
    • /
    • 2018
  • As The semiconductor decrease from 10 nanometer to 7 nanometer, It is suggested that "More than Moore" is needed to follow Moore's Law, which has been a guide for the semiconductor industry. Fan-Out Wafer Level Package(FOWLP) is considered as the key to "More than Moore" to lead the next generation in semiconductors, and the reasons are as follows. the fan-out WLP does not require a substrate, unlike conventional wire bonding and flip-chip bonding packages. As a result, the thickness of the package reduces, and the interconnection becomes shorter. It is easy to increase the number of I / Os and apply it to the multi-layered 3D package. However, FOWLP has many issues that need to be resolved in order for mass production to become feasible. One of the most critical problem is the warpage problem in a process. Due to the nature of the FOWLP structure, the RDL is wired to multiple layers. The warpage problem arises when a new RDL layer is created. It occurs because the solder ball reflow process is exposed to high temperatures for long periods of time, which may cause cracks inside the package. For this reason, we have studied warpage in the FOWLP structure using commercial simulation software through the implementation of the reflow process. Simulation was performed to reproduce the experiment of products of molding compound company. Young's modulus and poisson's ratio were found to be influenced by the order of influence of the factors affecting the distortion. We confirmed that the lower young's modulus and poisson's ratio, the lower warpage.

Genetic evaluation and accuracy analysis of commercial Hanwoo population using genomic data

  • Gwang Hyeon Lee;Yeon Hwa Lee;Hong Sik Kong
    • Journal of Animal Reproduction and Biotechnology
    • /
    • 제38권1호
    • /
    • pp.32-37
    • /
    • 2023
  • This study has evaluated the genomic estimated breeding value (GEBV) of the commercial Hanwoo population using the genomic best linear unbiased prediction (GBLUP) method and genomic information. Furthermore, it analyzed the accuracy and realized accuracy of the GEBV. 1,740 heads of the Hanwoo population which were analyzed using a single nucleotide polymorphism (SNP) Chip has selected as the test population. For carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), and marbling score (MS), the mean GEBVs estimated using the GBLUP method were 3.819, 0.740, -0.248, and 0.041, respectively and the accuracy of each trait was 0.743, 0.728, 0.737, and 0.765, respectively. The accuracy of the breeding value was affected by heritability. The accuracy was estimated to be low in EMA with low heritability and high in MS with high heritability. Realized accuracy values of 0.522, 0.404, 0.444, and 0.539 for CWT, EMA, BFT, and MS, respectively, showing the same pattern as the accuracy value. The results of this study suggest that the breeding value of each individual can be estimated with higher accuracy by estimating the GEBV using the genomic information of 18,499 reference populations. If this method is used and applied to individual selection in a commercial Hanwoo population, more precise and economical individual selection is possible. In addition, continuous verification of the GBLUP model and establishment of a reference population suitable for commercial Hanwoo populations in Korea will enable a more accurate evaluation of individuals.

Recent Research Trends in Touchscreen Readout Systems (최근 터치스크린 Readout 시스템의 연구 경향)

  • Jun-Min Lee;Ju-Won Ham;Woo-Seok Jang;Ha-Min Lee;Sang-Mo Koo;Jong-Min Oh;Seung-Hoon Ko
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제36권5호
    • /
    • pp.423-432
    • /
    • 2023
  • With the increasing demand for mobile devices featuring multi-touch operation, extensive research is being conducted on touch screen panel (TSP) Readout ICs (ROICs) that should possess low power consumption, compact chip size, and immunity to external noise. Therefore, this paper discusses capacitive touch sensors and their readout circuits, and it introduces research trends in various circuit designs that are robust against external noise sources. The recent state-of-the-art TSP ROICs have primarily focused on minimizing the impact of parasitic capacitance (Cp) caused by thin panel thickness. The large Cp can be effectively compensated using an area-efficient current compensator and Current Conveyor (CC), while a display noise reduction scheme utilizing a noise-antenna (NA) electrode significantly improves the signal-to-noise ratio (SNR). Based on these achievements, it is expected that future TSP ROICs will be capable of stable operation with thinner and flexible Touch Screen Panels (TSPs).

Identification of CNVs and their association with the meat traits of Hanwoo

  • Chan Mi Bang;Khaliunaa Tseveen;Gwang Hyeon Lee;Gil Jong Seo;Hong Sik Kong
    • Journal of Animal Reproduction and Biotechnology
    • /
    • 제38권3호
    • /
    • pp.158-166
    • /
    • 2023
  • Background: Copy number variation (CNV) can be identified using next-generation sequencing and microarray technologies, the research on the analysis of its association with meat traits in livestock breeding has significantly increased in recent years. Hanwoo is an inherent species raised in the Republic of Korea. It is now considered one of the most economically important species and a major food source mainly used for meat (Hanwoo beef). Methods: In this study, CNVs and the relationship between the obtained CNV regions (CNVRs) can be identified in the Hanwoo steer samples (n = 473) using Illumina Hanwoo SNP 50K bead chip and bioinformatic tools, which were used to locate the required data and meat traits were investigated. The PennCNV software was used for the identification of CNVs, followed by the use of the CNV Ruler software for locating the different CNVRs. Furthermore, bioinformatics analysis was performed. Results: We found a total of 2,575 autosomal CNVs (933 losses, 1,642 gains) and 416 CNVRs (289 gains, 111 losses, and 16 mixed), which were established with ranged in size from 2,183 bp to 983,333 bp and 10,004 bp to 381,836 bp, respectively. Upon analyzing the restriction of minor alleles frequency > 0.05 for meat traits association, 6 CNVRs in the carcass weight, 2 CNVRs in the marbling score, 3 CNVRs in the backfat thickness, and 2 CNVRs in the longissimus muscle area were related to the meat traits. In addition, we identified an overlap of 347 CNVRs. Moreover, 3 CNVRs were determined to have a gene that affects meat quality. Conclusions: Our results confirmed the relationship between Hanwoo CNVR and meat traits, and the possibility of overlapping candidate genes, annotations, and quantitative trait loci that results depended on to contribute to the greater understanding of CNVs in Hanwoo and its role in genetic variation among cattle livestock.

A Study on Physical and Chemical Properties of Vegetation Foundation for Rooftop Greening Using Wood Waste (폐목질 자원을 이용한 옥상녹화용 식생기반재의 물리 및 화학적 특성에 관한 연구)

  • Kim, Dae-Young;Kim, Mi Mi
    • Journal of the Korean Wood Science and Technology
    • /
    • 제36권1호
    • /
    • pp.79-87
    • /
    • 2008
  • Many researchers have studied on rooftop greening that can be installed in abandoned spaces on a building roof. The most important issue in rooftop greening is the soil weight problem. The light greening materials are needed to solve this problem. Therefore, many alternative materials against the soil were investigated for rooftop greening. In this study, the waste wood chips and the waste paper slurry were evaluated as the lightweight vegetation foundation for rooftop greening. It also has a meaning for recycling of waste materials. The mixture ratio of waste wood chips to waste paper slurry for the board (the foundation of greening) was 60 to 40. The wet strength resin and the sizing agent were additionally added with different amount. After the forming of the board, physical and chemical properties were tested with the variation of wet strength resin and sizing agent. As the result of the test, the board with 15% of wet strength resin in the wet condition showed the highest strength. Futhermore, the moisture evaporation loss from the board surface with sizing agent was much lower than that from the board without sizing agent. Therefore, it was clear that the sizing agent was effective for water retention. The change of thickness in the wet condition was less than 1 mm, and it showed that the board is the predominant material on the dimensional stability. The average pH value of the board was ranged from 7.6 to 8.25.

A Whole Genome Association Study to Detect Single Nucleotide Polymorphisms for Carcass Traits in Hanwoo Populations

  • Lee, Y.-M.;Han, C.-M.;Li, Yi;Lee, J.-J.;Kim, L.H.;Kim, J.-H.;Kim, D.-I.;Lee, S.-S.;Park, B.-L.;Shin, H.-D.;Kim, K.-S.;Kim, N.-S.;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권4호
    • /
    • pp.417-424
    • /
    • 2010
  • The purpose of this study was to detect significant SNPs for carcass quality traits using DNA chips of high SNP density in Hanwoo populations. Carcass data of two hundred and eighty nine steers sired by 30 Korean proven sires were collected from two regions; the Hanwoo Improvement Center of National Agricultural Cooperative Federation in Seosan, Chungnam province and the commercial farms in Gyeongbuk province. The steers in Seosan were born between spring and fall of 2006 and those in Gyeonbuk between falls of 2004 and 2005. The former steers were slaughtered at approximately 24 months, while the latter steers were fed six months longer before slaughter. Among the 55,074 SNPs in the Illumina bovine 50K chip, a total of 32,756 available SNPs were selected for whole genome association study. After adjusting for the effects of sire, region and slaughter age, phenotypes were regressed on each SNP using a simple linear regression model. For the significance threshold, 0.1% point-wise p value from F distribution was used for each SNP test. Among the significant SNPs for a trait, the best set of SNP markers were selected using a stepwise regression procedure, and inclusion and exclusion of each SNP out of the model was determined at the p<0.001 level. A total of 118 SNPs were detected; 15, 20, 22, 28, 20, and 13 SNPs for final weight before slaughter, carcass weight, backfat thickness, weight index, longissimus dorsi muscle area, and marbling score, respectively. Among the significant SNPs, the best set of 44 SNPs was determined by stepwise regression procedures with 7, 9, 6, 9, 7, and 6 SNPs for the respective traits. Each set of SNPs per trait explained 20-40% of phenotypic variance. The number of detected SNPs per trait was not great in whole genome association tests, suggesting additional phenotype and genotype data are required to get more power to detect the trait-related SNPs with high accuracy for estimation of the SNP effect. These SNP markers could be applied to commercial Hanwoo populations via marker-assisted selection to verify the SNP effects and to improve genetic potentials in successive generations of the Hanwoo populations.

Performance Enhancement of 3-way Doherty Power Amplifier using Gate and Drain bias control (Gate 및 Drain 바이어스 제어를 이용한 3-way Doherty 전력증폭기와 성능개선)

  • Lee, Kwang-Ho;Lee, Suk-Hui;Bang, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제48권1호
    • /
    • pp.77-83
    • /
    • 2011
  • In this thesis, 50W Doherty amplifier was designed and implemented for Beyond 3G's repeater and base-station. Auxiliary amplifier of doherty amplifier was implemented by Gate bias control circuit. Though gate bias control circuit solved auxiliary's bias problem, output characteristics of doherty amplifier was limited. To enhance the output characteristic relativize Drain control circuit And To improve power efficiency make 3-way Doherty power amplifier. therefore, 3-way GDCD (Gate and Drain bias Control Doherty) power amplifier is embodied to drain bias circuit for General Doherty power amplifier. The 3-way GDCD power amplifier composed of matching circuit with chip capacitor and micro strip line using FR4 dielectric substance of specific inductive capacity(${\varepsilon}r$) 4.6, dielectric substance height(H) 30 Mills, and 2.68 Mills(2 oz) of copper plate thickness(T). Experiment result satisfied specification of amplifier with gains are 57.03 dB in 2.11 ~ 2.17 GHz, 3GPP frequency band, PEP output is 50.30 dBm, W-CDMA average power is 47.01 dBm, and ACLR characteristics at 5MHz offset frequency band station is -40.45 dBc. Especially, 3-way DCHD power amplifier showed excellence efficiency performance improvement in same ACLR than general doherty power amplifier.

Compact Broad-band Antenna Using Archimediean Spiral Slot (알키메디안 스파이럴 슬롯을 이용한 소형화된 광대역 안테나)

  • Kim, June-Hyong;Cho, Tae-June;Lee, Hong-Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제47권3호
    • /
    • pp.50-56
    • /
    • 2010
  • In this paper, compact broad-band antenna using circular spiral slot and CPW (coplanar waveguide) feed is proposed. The proposed antenna is designed on the same plane of the substrate by using CPW fed structure, archimediean spiral slot structure. So it was achieved both the size of compact antenna and the broad band. A archimediean spiral slot structure is introduced for resonance of medium band operation. The distances of a CPW feeder line and a ground plane are modified for impedance matching and lower/higher band operation. The proposed antenna has a compact size ($8mm\;{\times}\;13mm$) and it is etched on the FR-4 (relative dielectric constant 4.4, thickness 0.8mm) dielectric substrate. The simulated impedance bandwidth (VSWR $\leq$ 2) and maximum gain of the proposed antenna are 5.98GHz (4.1GHz ~ 10.08GHz) and 3.97dBi, respectively. The measured impedance bandwidth (VSWR $\leq$ 2) and maximum gain of the proposed antenna are 6.02GHz (4.48GHz ~ 10.5GHz) and 2.68dBi, respectively. The simulation and measured result shows good impedance matching and radiation pattern over the interesting frequency bands. It can be applied to antenna of broad-band wireless communication system.

Design of a Full-Printed NFC Tag Using Silver Nano-Paste and Carbon Ink (은 나노 분말과 카본 잉크를 이용한 완전 인쇄형 NFC 태그 설계)

  • Lee, Sang-hwa;Park, Hyun-ho;Choi, Eun-ju;Yoon, Sun-hong;Hong, Ic-pyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제42권4호
    • /
    • pp.716-722
    • /
    • 2017
  • In this paper, a fully printed NFC tag operating at 13.56 MHz was designed and fabricated using silver nano-paste and carbon ink. The proposed NFC tag has a printed coil with an inductance of $2.74{\mu}H$ on a PI film for application to an NFC tag IC with an internal capacitance of 50 pF. Screen printing technology used in this paper has advantages such as large area printing for mass production, low cost and eco-friendly process compared to conventional PCB manufacturing process. The proposed structure consists of a circular coil implemented as a single layer using silver nano-paste and carbon ink, a jumper pattern for chip mounting between the outer edge and the center of the coil, and an insulation pattern between the coil and the jumper pattern. In order to verify the performance of the proposed NFC tag, we performed the measurements of the printing line width, thickness, line resistance, adhesion and environmental reliability, and confirmed the suitability of the NFC tag based on the full-printed manufacturing method.