• 제목/요약/키워드: Chip Formations

검색결과 9건 처리시간 0.031초

고품위 안경테 제작을 위한 안경테 소재(Cellulose Acetate)의 가공성 평가 및 절삭조건 선정 (Machinability Evaluation and Cutting Condition Selection of Cellulose Acetate for Manufacturing of High-quality Spectacle Frames)

  • 강익수;이승용;최현진;이태호;최성대
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.20-24
    • /
    • 2012
  • The objective of this study is to investigate proper cutting conditions of cellulose acetate(CA) for eyewear frames. Various cutting experiments with variation of spindle speeds and feed rates are conducted to evaluate the machinability of CA. The machinability of CA materials were discussed in terms of the cutting forces, surface roughnesses and chip formations. The cutting conditions of high spindle speeds and the feed per tooth of less than 0.05mm are recommended considering the surface roughnesses and chip formations. Also, the correlation between the surface roughness and the chip formation is investigated. These results are able to be applied to design the high-speed machine tool of CA frame.

난삭재의 저온절삭에서의 절삭특성에 관한 연구

  • 김칠수;오선세;임영호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 춘계학술대회 논문집
    • /
    • pp.89-93
    • /
    • 1992
  • We experimented cutting characteristics-cutting force, behavior of chip, surface roughness-under low temperature, which generated by liquid nitrogen(77K). The results obtained are as follows; 1) The workpice is became to-195 .deg. C in 5, minutes, and in cooled cutting, cutting force bycooled workpices is stronger than normal temperature condition. Chip thickness is decreasing comparative toN.C and shear angle in shear plane is in creasing. 2) Chip formation becomes long or short tubular chips in turning SXM440, SNCM21 steel, when cutting speed is low and cutting temperatre is cooled condition, but in the STS304 steel the variation of c formations isn't known to. 3) In C.C, surface roughness of workpices is better than N.C and found to make more the crat wearthan N.C 4) It is possible to detect the behavior of chip by monitoring the maximum amplitude of gai value of cutting force.

미소 전단 띠 형성에 의한 톱니형 칩 생성 예측 (Prediction of Serrated Chip Formation due to Micro Shear Band in Metal)

  • 임성한;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.427-733
    • /
    • 2003
  • Adiabatic shear bands have been observed in the serrated chip during high strain rate metal cutting process of medium carbon steel and titanium alloy. The recent microscopic observations have shown that dynamic recrystallization occurs in the narrow adiabatic shear bands. However the conventional flow stress models such as the Zerilli-Armstrong model and the Johnson-Cook model, in general, do not predict the occurrence of dynamic recrystallization (DRX) in the shear bands and the thermal softening effects accompanied by DRX. In the present study, a strain hardening and thermal softening model is proposed to predict the adiabatic shear localized chip formation. The finite element analysis (FEA) with this proposed flow stress model shows that the temperature of the shear band during cutting process rises above 0.5T$\sub$m/. The simulation shows that temperature rises to initiate dynamic recrystallization, dynamic recrystallization lowers the flow stress, and that adiabatic shear localized band and the serrated chip are formed. FEA is also used to predict and compare chip formations of two flow stress models in orthogonal metal cutting with AISI 1045. The predictions of the FEA agreed well with the experimental measurements.

  • PDF

고속 절삭공정 중 톱니형 칩 생성 예측 (Prediction of Serrated Chip Formation in High Speed Metal Cutting)

  • 임성한;오수익
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.358-363
    • /
    • 2003
  • Adiabatic shear bands have been observed in the serrated chip during high strain rate metal cutting process of medium carbon steel and titanium alloy The recent microscopic observations have shown that dynamic recrystallization occurs in the narrow adiabatic shear bands. However the conventional flow stress models such as the Zerilli-Armstrong model and the Johnson-Cook model, in general, do not predict the occurrence of dynamic recrystallization (DRX) in the shear bands and the thermal softening effects accompanied by DRX. In the present study, a strain hardening and thermal softening model is proposed to predict the adiabatic shear localized chip formation. The finite element analysis (FEA) with this proposed flow stress model shows that the temperature of the shear band during cutting process rises above 0.5Τ$_{m}$. The simulation shows that temperature rises to initiate dynamic recrystallization, dynamic recrystallization lowers the flow stress, and that adiabatic shear localized band and the serrated chip are formed. FEA is also used to predict and compare chip formations of two flow stress models in orthogonal metal cutting with AISI 1045. The predictions of the FEA agreed well with the experimental measurements.s.

선삭가공에 있어서 절삭저항의 동적성분에 관한 연구 [I] -동적성분에 의한 Chip배출상태의 인식- (A Study on the Dynamic Component of Cutting Force in Turning[1] -Recognition of Chip Flow by the Dynamic Cutting Force Component-)

  • 정의식
    • 한국정밀공학회지
    • /
    • 제5권1호
    • /
    • pp.84-93
    • /
    • 1988
  • The on-line detection of the chip flow is one of the most important technologies in com- pletly automatic operation of machine tool, such as FMS and Unmanned Factories. This problem has been studied by many researchers, however, it is not solved as yet. For the recognition of chip flow in this study, the dynamic cutting force components due to the chip breaking were measured by dynamometer of piezo-electric type, and the frequency components of cutting force were also analyzed. From the measured results, the effect of cutting conditions and tool geometry on the dynamic cutting force component and chip formation were investigated in addition to the relationships between frequency of chip breaking (fB) and side serrated crack (fC) of chip. As a result, the following conclusions were obtaianed. 1) The chip formations have a large effect on the dynamic cutting force components. When chip breaking takes place, the dynamic cutting force component greatly increases, and the peridoic components appear, which correspond to maximum peak- frequency. 2) The crater wear of tool has a good effect on the chip control causing the chiup to be formed as upward-curl shape. In this case, the dymamic cutting force component greatly increases also 3) fB and fC of chip are closely corelated, and fC of chips has a large effect on the change of the situation of chip flow and dynamic cutting force component. 4) Under wide cutting conditions, the limit value (1.0 kgf) of dynamic cutting force component exists between the broken and continuous chips. Accordingly, this value is suitable for recognition of chip flow in on-line control of the cutting process.

  • PDF

선삭에서 AE센서를 이용한 절삭성 평가 (Assessment of Cutting Performance Using AE Sensor in Turning)

  • 최원식
    • 센서학회지
    • /
    • 제8권6호
    • /
    • pp.469-475
    • /
    • 1999
  • 공작기계의 자동화 고속화에 의해 절삭 작업은 향상되고 있지만 선삭시 발생하는 연속형 고속형칩은 작업능률을 저하시킴으로 AE센서를 이용한 절삭 실험을 통하여 절삭 조건에 따른 AE 신호의 특징을 분석하고 칩과 관련된 신호특성을 분석결과 칩 형상에 가장 중요한 요인이 되는 것은 AE진폭 신호와 AE 에너지 신호였음을 확인하였으며, AE진폭 신호와 AE에너지 신호를 통계적 처리한 결과 에너지신호 보다는 진폭 신호의 첨도값이 선삭시 절삭특성을 잘 나타내 주고 있었으며, 비절삭에너지를 이용하여 절삭성능을 종합적으로 평가하였다.

  • PDF

선박엔진의 Supply Unit용 SNCM420H의 절삭특성 (Cutting Characteristic of SNCM420H steel for Ship Engine Supply Unit)

  • 최원식;성봉수;강창원;문희준;권주리
    • 한국생산제조학회지
    • /
    • 제19권5호
    • /
    • pp.631-636
    • /
    • 2010
  • SNCM420 steel is one of the cam shaft materials which are used in the supply unit for ship engine cam shaft. In this study the assessment of cutting behavior was conducted for the SNCM 420 steel and SM45C steel with various cutting conditions as depth of cut 0.5, 1.0, 1.5, 2.0mm and feed rate 0.1~0.3m/rev. The controlled chip was produced in feed rate 0.2, depth of cut 1.0 for SNCM420 and feed rate 0.2, depth of cut 2.0 for SM45C. There is no difference cutting force between SM45C and SNCM420 steels.

언더필 공정에서 레이싱 효과와 계면 병합에 대한 가시화 (Visualization for racing effect and meniscus merging in underfill process)

  • 김영배;김선구;성재용;이명호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권4호
    • /
    • pp.351-357
    • /
    • 2013
  • 플립칩 패키징에서 언더필 공정은 칩과 기판 사이를 에폭시로 채워서 본딩하는 공정으로 제품의 신뢰성 향상을 위해 수행되어 진다. 이 언더필 공정은 모세관 현상에 의해서 이루어지는데 유체의 계면과 범프의 배열이 계면 운동에 미치는 영향으로 인하여 공정 중 예기치 않은 공기층을 형성하게 된다. 본 연구에서는 모세관 언더필 유동에서 나타나는 비정상 계면 유동을 가시화하여 범프 배열에 따른 레이싱 효과와 계면의 병합 현상에 대하여 고찰하였다. 그 결과, 플립칩 내부의 범프가 고밀도일수록 유체의 흐름방향과 수직방향의 유동이 더욱 활발하게 진행되어 더 많은 공기층이 형성되었으며, 엇갈린 배열일 경우 직각 배열에 비해 이러한 현상이 더 지배적으로 나타난다.

후속 열처리조건이 스크린 프린팅 Ag 박막과 폴리이미드 사이의 필강도에 미치는 영향 (Effect of Post-Annealing Condition on the Peel Strength of Screen-printed Ag Film and Polyimide Substrate)

  • 배병현;이현철;손기락;박영배
    • 마이크로전자및패키징학회지
    • /
    • 제24권2호
    • /
    • pp.69-74
    • /
    • 2017
  • 인쇄전자소자 금속 배선의 고온 신뢰성 평가를 위해 스크린 프린팅 기법으로 도포된 Ag 박막과 폴리이미드 기판 사이의 계면접착력을 $200^{\circ}C$ 후속 열처리 시간에 따라 $180^{\circ}$ 필 테스트를 통해 평가하였고, 박리 계면 미세구조를 분석하였다. 후속 열처리 전 필 강도는 약 16.7 gf/mm 이었고, 열처리 24 시간 후 필 강도는 29.4 gf/mm까지 증가하였는데, 이는 초기 열처리에 의해 접합계면에서 Ag-O-C 화학 결합의 증가와 바인더의 organic bridges 효과가 주 원인인 것으로 판단된다. 한편, 열처리 시간이 48, 100, 250, 500 시간으로 더욱 증가함에 따라 필 강도는 각각 22.3, 3.6, 0.6, 0.1 gf/mm으로 급격히 감소하는 거동을 보였다. 이는 $200^{\circ}C$의 고온에서 장시간 노출되었을 때 Cu/Ag 계면 산화막 형성이 주 원인인 것으로 판단된다.