• 제목/요약/키워드: Chip Flow

검색결과 315건 처리시간 0.022초

마이크로컨트롤러 인터럽트를 사용한 임베디드시스템의 다중 상태기계 모델링 기반 구현 기법 (An Embedded Systems Implementation Technique based on Multiple Finite State Machine Modeling using Microcontroller Interrupts)

  • 이상설
    • 한국멀티미디어학회논문지
    • /
    • 제16권1호
    • /
    • pp.75-86
    • /
    • 2013
  • 본 논문은 많은 주변장치와 인터페이스 되는 단일칩 마이크로컨트롤러로 구현되는 임베디드시스템을 인터럽트를 사용하여 다중 유한상태기계로 모델링하고 구현하는 방법을 제시한다. 다중 상태기계 모델은 하드웨어설계에 사용되는 FSMD 구조와 인터럽트에 의한 흐름제어 특징을 이용한다. 주 프로그램은 주상태기계에 대응하고, 부상태기계는 인터럽트 서비스루틴에 대응한다. 따라서 주변장치에서 발생하는 인터럽트는 부상태기계에서 신속히 처리될 수 있다. 유한상태기계 사이의 인터페이스는 요청과 응답 변수를 사용한다. 주상태기계와 부상태기계 사이의 콘텍스트 스위칭은 인터럽트에 의한 하드웨어 흐름제어로 대치될 수 있어 별도의 운영체제가 필요하지 않다. ASM 차트를 사용하여 다중 유한상태기계로 모델링된 임베디드시스템은 C언어 프로그램으로 변환시켜 쉽게 구현될 수 있다. 이 구현 방법은 모델링이 구체적고 부상태기계에서 인터럽트에 신속히 반응할 수 있어 하드웨어가 많이 사용되는 내장형시스템에 쉽게 적용될 수 있다.

반도체 및 전자패키지의 방열기술 동향 (Heat Dissipation Trends in Semiconductors and Electronic Packaging)

  • 문석환;최광성;엄용성;윤호경;주지호;최광문;신정호
    • 전자통신동향분석
    • /
    • 제38권6호
    • /
    • pp.41-51
    • /
    • 2023
  • Heat dissipation technology for semiconductors and electronic packaging has a substantial impact on performance and lifespan, but efficient heat dissipation is currently facing limited improvement. Owing to the high integration density in electronic packaging, heat dissipation components must become thinner and increase their performance. Therefore, heat dissipation materials are being devised considering conductive heat transfer, carbon-based directional thermal conductivity improvements, functional heat dissipation composite materials with added fillers, and liquid-metal thermal interface materials. Additionally, in heat dissipation structure design, 3D printing-based complex heat dissipation fins, packages that expand the heat dissipation area, chip embedded structures that minimize contact thermal resistance, differential scanning calorimetry structures, and through-silicon-via technologies and their replacement technologies are being actively developed. Regarding dry cooling using single-phase and phase-change heat transfer, technologies for improving the vapor chamber performance and structural diversification are being investigated along with the miniaturization of heat pipes and high-performance capillary wicks. Meanwhile, in wet cooling with high heat flux, technologies for designing and manufacturing miniaturized flow paths, heat dissipating materials within flow paths, increasing heat dissipation area, and reducing pressure drops are being developed. We also analyze the development of direct cooling and immersion cooling technologies, which are gradually expanding to achieve near-junction cooling.

전단응력 하에서 에멀젼 상 변이의 측정을 위한 전기 유변학적 연구 (Electro-rheological Measurements of Phase Inversion of Emulsions under Shear Flow)

  • Seung Jae, Baik;Young-Jin, Lee;Yoon Sung, Nam;Chin Han, Kim;Han Kon, Kim;Hak Hee, Kang
    • 대한화장품학회지
    • /
    • 제30권2호
    • /
    • pp.147-151
    • /
    • 2004
  • 본 연구는 다양한 종류의 에멀젼에 전단응력을 가하며 그때 일어나는 에멀젼의 상 변이를 전기, 유변학적 특징을 통해 실시간으로 측정해 보는 것이다. 전기 전도도의 변화는 자체 제작한 JELLI$^{TM}$(Joint Electro-rheometer for Liquid-Liquid Inversion) 칩을 이용하였으며, 동시에 유변물성측정장치(rheometer)를 이용하여 유변물성의 변화를 측정하였다 JELLI$^{TM}$ 칩과 인조 피부를 유변물성측정장치 사이에 장착하고 그 사이에 다양한 종류의 에멀젼을 얇게 발라준 후, 일정한 전단응력을 주며 시간에 따른 저항과 점도 값의 변화를 측정하였다. O/W 제형의 경우 시간에 따라 저항 값이 커지는 경향을 보였으며 저항 값은 내부 상이 많을수록 더 급격한 변화를 나타냈다. 이때의 점도 변화를 보면, 저항 값의 변화가 클수록 점도의 변화도 큼을 볼 수 있었다. 이것은 내부 상의 파괴로 인해 외부의 힘에 저항하는 힘이 약해졌기 때문이라고 예상된다. 이런 결과를 이용하여 전단응력에 의한 에멀젼 상 변이 특성과 정도를 실시간, 정량적 비교할 수 있었다.

In situ analysis of capturing dynamics of magnetic nanoparticles in a microfluidic system

  • Munir, Ahsan;Zhu, Zanzan;Wang, Jianlong;Zhou, H. Susan
    • Smart Structures and Systems
    • /
    • 제12권1호
    • /
    • pp.1-22
    • /
    • 2013
  • Magnetic nanoparticle based bioseparation in microfluidics is a multiphysics phenomenon that involves interplay of various parameters. The ability to understand the dynamics of these parameters is a prerequisite for designing and developing more efficient magnetic cell/bio-particle separation systems. Therefore, in this work proof-of-concept experiments are combined with advanced numerical simulation to design and optimize the capturing process of magnetic nanoparticles responsible for efficient microfluidic bioseparation. A low cost generic microfluidic platform was developed using a novel micromolding method that can be done without a clean room techniques and at much lower cost and time. Parametric analysis using both experiments and theoretical predictions were performed. It was found that flow rate and magnetic field strength greatly influence the transport of magnetic nanoparticles in the microchannel and control the capturing efficiency. The results from mathematical model agree very well with experiments. The model further demonstrated that a 12% increase in capturing efficiency can be achieved by introducing of iron-grooved bar in the microfluidic setup that resulted in increase in magnetic field gradient. The numerical simulations were helpful in testing and optimizing key design parameters. Overall, this work demonstrated that a simple low cost experimental proof-of-concept setup can be synchronized with advanced numerical simulation not only to enhance the functional performance of magneto-fluidic capturing systems but also to efficiently design and develop microfluidic bioseparation systems for biomedical applications.

Wafer-Level Three-Dimensional Monolithic Integration for Intelligent Wireless Terminals

  • Gutmann, R.J.;Zeng, A.Y.;Devarajan, S.;Lu, J.Q.;Rose, K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제4권3호
    • /
    • pp.196-203
    • /
    • 2004
  • A three-dimensional (3D) IC technology platform is presented for high-performance, low-cost heterogeneous integration of silicon ICs. The platform uses dielectric adhesive bonding of fully-processed wafer-to-wafer aligned ICs, followed by a three-step thinning process and copper damascene patterning to form inter-wafer interconnects. Daisy-chain inter-wafer via test structures and compatibility of the process steps with 130 nm CMOS sal devices and circuits indicate the viability of the process flow. Such 3D integration with through-die vias enables high functionality in intelligent wireless terminals, as vertical integration of processor, large memory, image sensors and RF/microwave transceivers can be achieved with silicon-based ICs (Si CMOS and/or SiGe BiCMOS). Two examples of such capability are highlighted: memory-intensive Si CMOS digital processors with large L2 caches and SiGe BiCMOS pipelined A/D converters. A comparison of wafer-level 3D integration 'lith system-on-a-chip (SoC) and system-in-a-package (SiP) implementations is presented.

볼 엔드밀 가공의 유연 절삭력 모델에 관한 연구 (A Study on the Flexible Cutting Force Model in the Ball End Milling Process)

  • 최종근;강윤구;이재종
    • 한국공작기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.44-52
    • /
    • 2003
  • This research suggests a cutting force model for the ball end milling processes. This model includes the effect of tool run out and tool deflection. In the proposed model, the flutes of ball end mills are considered as series of infinitesimal elements and each cutting edge is assumed to be straight for the analysis of the oblique cutting process, in which the small cutting edge element has been analyzed as an orthogonal cutting process n the plane including the cutting velocity and the chip-flow vector. Therefor, the cutting forces can be calculated through the model using the orthogonal cutting data obtained from the orthogonal cutting test. In order to enhance the performance of the model, the flutes of ball end mill are defined to keep geometric consistency at the peak of the ball part and the junction with the end mill part. The divided infinitesimal cutting edges are regulated to be even lengths. Some experiments show the validity of the developed model in the various cutting coalitions.

Duct ANC 시스템에서 2차음원 방향별 소음감소효과 (An attenuation effect of noise according to the direction of secondary sound source in duct ANC system)

  • 이형석;이응석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.497-502
    • /
    • 2008
  • In this paper, we studied on an attenuation effect of automobile exhaust noise according to the direction of secondary sound source in duct ANC system. Automobile exhaust noise was recorded at 800rpm. 3500rpm and 5000rpm of a diesel engine. Directions of loudspeaker(second sound source) can be exchanged to $30^{\circ}$, $90^{\circ}$ and $150^{\circ}$ against the primary noise flow by acrylic ducts to be made for experimentation. DSP board with TMS320C6416 chip of Texas Instrument Co used to control adaptive ANC system. This ANC system is based on the single-channel FxLMS algorithm. In experiment result, when the loud speaker direction was $150^{\circ}$, the attenuation effect showed largely. In case of $90^{\circ}$ duct, the noise was a little increased. In case of $30^{\circ}$ duct, the noise was a little increased or decreased according to the frequency range and the sound pressure(dB) of exhaust noise to comply with engine rpm.

  • PDF

음향방출을 이용한 가공중의 엔드밀 파손 검출에 관한 연구 (A Study on the In-process Detection of Fracture of Endmill by Acoustic Emission Measurement)

  • 윤종학;강명순
    • 한국정밀공학회지
    • /
    • 제7권3호
    • /
    • pp.75-82
    • /
    • 1990
  • Automatic monitoring of the cutting conditions is one of the most improtant technologies in machining. In this study, the feasibility in applying acoustic emission(AE) signals for the in-process detection of endmill wear and fracture has been investigated by performing experimental test on the NC vertical milling machine with SM45C for specimen. As the results of detecting and analyzing AE signals on various cutting conditions, the followings have confirmed. (1) The RMS value of acoustic emission is related sensitively to the cutting velocity, but is not affected largely by feed rate. (2) The burst type AE signals of high level have been observed when removing chips distorderly and discontinuously. (3) When the RMS value grows up rapidly due to the increase of wear the endmill are generally broken or fractured, but when the endmills fracture at the conditions of smooth chip-flow or built-up-edge(BUE) occurred frequently, the rapid change of the RMS arenot found. And it is expected that this technigue will be quite useful for in-process sensing of tool wear and fracture.

  • PDF

Characteristics of Micro-Machining Using Two-Dimensional Tool Vibration

  • Ahn, Jung-Hwan;Lim, Han-Seok;Son, Seong-Min
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권3호
    • /
    • pp.41-46
    • /
    • 2001
  • This paper discusses the feasibility of improving micro-machining accuracy by using two-dimensional(2-D) vibration cutting. Vibration cutting is generated by two piezo actuators arranged orthogonally : one is actuated by a sine curve voltage input, and the other is actuated by a phase-shifted sine curve voltage. A tool attached to the vibrator oscillates in a 2-D elliptical motion, depending on the frequencies, amplitudes, and the phase shifts of two input signals and the workpiece feedrate. Along the elliptical tool locus, cutting is done in the lower part, and non-cutting is done in the upper part. By this way a unique feature of 2-D vibration cutting, that is, air lubrication between a tool and chips, is caused. Another unique feature of 2-D vibration cutting was experimentally verified, that is, some negative thrust force occurs as the direction of chip movement on a tool rake face is reversed. Those features not only help chips flow smoothly and continuously but also reduce cutting force, which results in a higher quality machined surface. Through tool path simulations and experiments under several micro-machining conditions, the 2-D vibration cutting, compared to conventional cutting, was found to result in a great decrease in the cutting force, a much smoother surface, and much less burr.

  • PDF

태양광발전을 이용한 냉동.냉장창고용 냉수펌프의 에너지절감 기법 (Energy Saving Technique of Refrigeration Warehouse Cold Water Pump Using Photovoltaic Generation)

  • 김대균;전기영;이상집;정춘병;이훈구;한경희
    • 조명전기설비학회논문지
    • /
    • 제19권6호
    • /
    • pp.92-99
    • /
    • 2005
  • 냉동 냉장창고용 냉수펌프 시스템을 태양광발전 시스템과 연계하여 펌프의 양정 및 유량의 변화에 따른 압력의 변화에도 불구하고 목표치 압력을 일정하게 제어할 수 있도록 하였다. BLDC 모터를 벡터제어 함으로써 각 운전속도의 영역에서 최대토크 운전 및 높은 신뢰성을 가능하도록 하여 냉동 냉장창고용 냉수 펌프 시스템의 에너지 절감 효과를 실현하였다.