• Title/Summary/Keyword: Chip Flow

Search Result 315, Processing Time 0.022 seconds

Opto-electrokinetic Technique for Microfluidic Manipulation of Microorganism (광-전기역학 기술을 이용한 미생물의 미세유체역학적 제어)

  • Kwon, Jae-Sung
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.1
    • /
    • pp.69-77
    • /
    • 2019
  • This paper introduces microfluidic manipulation of microorganism by opto-electrokinetic technique, named rapid electrokinetic patterning (REP). REP is a hybrid method that utilizes the simultaneous application of a uniform electric field and a focused laser to manipulate various kinds and types of colloidal particles. Using the technique in preliminary experiments, we have successfully aggregated, translated, and trapped not only spherical polystyrene, latex, and magnetic particles but also ellipsoidal glass particles. Extending the manipulation target to cells, we attempted to manipulate saccharomyces cerevisiae (S. cerevisiae), the most commonly used microorganism for food fermentation and biomass production. As a result, S. cerevisiae were assembled and dynamically trapped by REP at arbitrary location on an electrode surface. It firmly establishes the usefulness of REP technique for development of a high-performance on-chip bioassay system.

Force Analysis of the Face Milling Process by Shear Flow Stress Model (전단유동응력에 의한 정면밀링의 절삭력 해석)

  • 이우영;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1170-1182
    • /
    • 1989
  • 본 연구에서는 해석 기하학적인 접근 방법으로서 전단응력으로 표현되는 3차원 절삭이론을 유도하고 이것을 정면밀링의 해석에 적용하여 기본적인 파라메트 들은 실험이 비교적 용이한 선삭에서 결정하고 그들을 이용하여 밀링절삭력을 유효 하게 예측할 수 있도록 하는 방법을 제시하였다.

Development of Human Papillomavirus DNA Array by Using Lateral Flow Membrane Assay (Lateral Flow Membrane를 이용한 인유두종 바이러스 DNA Array의 개발)

  • Kim, Ki-Whang;Lee, Hyung-Ku;Cho, Hong-Bum
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.346-351
    • /
    • 2008
  • This study develops DNA array which can detect specific sequence of human papilomavirus (HPV) by using lateral flow membrane assay which is usually used for point of care test including pregnant diagnosis. Principle of HPV DNA array is as follow; fixing DNA probe which is peculiar to HPV type 6, 11, 16, 18, 31, 45 on a surface of lateral flow membrane and inducing hybridization response between probe and HPV PCR products which is obtained by using biotin-labeled MY09/l1 primers. And then, we can see the result of DNA hybridization that streptavidin labelled colloidal gold is responded with hybrid biotin. Lateral flow membrane array developed in this study confirms major HPV type economically and conveniently compared with existing HPV DNA chip method.

Determination of Flow Stress and Cutting Force Prediction of Ti-6Al-4V Material for 3D Printer using S-K Constitutive Equation (S-K 구성방정식을 이용한 프린터용 3D Ti-6Al-4V 재료의 유동응력 결정 및 절삭력 예측)

  • Park, Dae-Gyoun;Kim, Tae-Ho;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.68-74
    • /
    • 2018
  • Study on the Ti-6Al-4V have been carried out using cutting simulation, and researches for cutting force and chip shape prediction have been actively conducted under various conditions. However, a 3D printer application method using Ti-6Al-4V metal powder material as a high-power method has been studied for the purpose of prototyping, mold modification and product modification while lowering material removal rate. However, in the case of products / parts made of 3D printers using powder materials, problems may occur in the contact surface during tolerance management and assembly due to the degradation of the surface quality. As a result, even if a 3D printer is applied, post-processing through cutting is essential for surface quality improvement and tolerance management. In the cutting simulation, the cutting force and the chip shape were predicted based on the Johnson-Cook composition equation, but the shape of the shear type chip was not predictable. To solve this problem, we added a damaging term or strain softening term to the Johnson-Cook constitutive equation to predict chip shape. In this thesis, we applied the constant value of the S-K equations to the cutting simulation to predict the cutting force and compare with the experimental data to verify the validity of the cutting simulation and analyzed the machining characterization by considering conditions.

Visualization for racing effect and meniscus merging in underfill process (언더필 공정에서 레이싱 효과와 계면 병합에 대한 가시화)

  • Kim, Young Bae;Kim, Sungu;Sung, Jaeyong;Lee, MyeongHo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.351-357
    • /
    • 2013
  • In flip chip packaging, underfill process is used to fill epoxy bonder into the gap between a chip and a substrate in order to improve the reliability of electronic devices. Underfill process by capillary motion can give rise to unwanted air void formations since the arrangement of solder bumps affects the interfacial dynamics of flow meniscus. In this paper, the unsteady flows in the capillary underfill process are visualized and then the racing effect and merging of the meniscus are investigated according to the arrangement of solder bumps. The result is shown that at higher bump density, the fluid flow perpendicular to the main direction of flow becomes stronger so that more air voids are formed. This phenomenon is more conspicuous at a staggered bump array than at a rectangular bump array.

Micro- PIV Measurements of Microchannel Flows and Related Problems (마이크로 채널 내부 유동의 Micro-PIV측정과 제반 문제점)

  • Lee Sang-Joon;Kim Guk-bae
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.79-84
    • /
    • 2002
  • Most microfluidic devices such as heat sinks for cooling micro-chips, DNA chip, Lab-On-Chip, and micro pumps etc. have microchannels of various size. Therefore, the design of practical microfluidics demands detail information on flow structure inside the microchannels. However, detail velocity field measurements are rare and difficult to carry out. In addition, as the microfluidics expands, accurate understanding of microscale transport phenomena becomes very important. In this research, micro-PIV system was employed to measure the velocity fields of flow inside a micro-channel. We carried out PIV measurements for several microchannels with varying channels width, inlet and outlet shape, filters, CCD camera and ICCD camera, etc. For effective composition of micro-PIV system, first of all, it is essential to understand optics related with micro-imaging of particles and the particle dynamics encountered in micro-scale channel flows. In addition, it is necessary to find the optimal condition for given experimental environment and? micro-scale flow to be investigated. The problems encountered in measuring velocity field of micro-channel flows are discussed in this paper.

  • PDF

Collaborative Streamlined On-Chip Software Architecture on Heterogenous Multi-Cores for Low-Power Reactive Control in Automotive Embedded Processors (차량용 임베디드 프로세서에서 저전력 반응적 제어를 위한 이기종 멀티코어 협력적 스트리밍 온-칩 소프트웨어 구조)

  • Jisu, Kwon;Daejin, Park
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.6
    • /
    • pp.375-382
    • /
    • 2022
  • This paper proposes a multi-core cooperative computing structure considering the heterogeneous features of automotive embedded on-chip software. The automotive embedded software has the heterogeneous execution flow properties for various hardware drives. Software developed with a homogeneous execution flow without considering these properties will incur inefficient overhead due to core latency and load. The proposed method was evaluated on an target board on which a automotive MCU (micro-controller unit) with built-in multi-cores was mounted. We demonstrate an overhead reduction when software including common embedded system tasks, such as ADC sampling, DSP operations, and communication interfaces, are implemented in a heterogeneous execution flow. When we used the proposed method, embedded software was able to take advantage of idle states that occur between heterogeneous tasks to make efficient use of the resources on the board. As a result of the experiments, the power consumption of the board decreased by 42.11% compared to the baseline. Furthermore, the time required to process the same amount of sampling data was reduced by 27.09%. Experimental results validate the efficiency of the proposed multi-core cooperative heterogeneous embedded software execution technique.

HP LED의 열거동형상 분석을 위한 thermal simulation

  • Lee, Seung-Min;Yang, Jong-Gyeong;Lee, Hyeon-Hui;Park, Dae-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.191-191
    • /
    • 2009
  • In this paper, we have confirmed the temperature of LED chip and McPCB with thermal simulation program which is CFDedign V10 for analysis the thermal flow of HP LED package. we have known that the heat from LED chip is transferred through heat slug to copper layer of McPCB. the temperature of LED chip shows 85.11 [$^{\circ}C$], which shows the temperature gap of 7.52 [$^{\circ}C$] against McPCB. the gap of temperature affect reliability of the wire bonding and die attachment. therefore, copper layer of heat slug on the McPCB should designed with the largest dimension.

  • PDF

Analysis of 3-D Cutting Process with Single Point Tool

  • Lee, Young-Moon;Park, Won-Sik;Song, Tae-Seong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.15-21
    • /
    • 2000
  • This study presents a procedure for analyzing chip-tool friction and shear processes in 3-D cutting with a single point tool. The edge of a single point tool including a circular nose is modified to an equivalent straight edge, thereby reducing the 3-D cutting with a single point tool to the equivalent of oblique cutting. Then, by transforming the conventional coordinate systems and using the measurements of three cutting force components, the force components on the rake face and shear plane of the equivalent oblique cutting system can be obtained. As a result, the chip-tool friction and shear characteristics of 3-D cutting with a single point tool can be assessed.

  • PDF