Browse > Article

Development of Human Papillomavirus DNA Array by Using Lateral Flow Membrane Assay  

Kim, Ki-Whang (Diaprobe Ltd., Seokyeong University)
Lee, Hyung-Ku (Digital genomics Ltd.)
Cho, Hong-Bum (Department of Biological Engineering, Seokyeong University)
Publication Information
Korean Journal of Microbiology / v.44, no.4, 2008 , pp. 346-351 More about this Journal
Abstract
This study develops DNA array which can detect specific sequence of human papilomavirus (HPV) by using lateral flow membrane assay which is usually used for point of care test including pregnant diagnosis. Principle of HPV DNA array is as follow; fixing DNA probe which is peculiar to HPV type 6, 11, 16, 18, 31, 45 on a surface of lateral flow membrane and inducing hybridization response between probe and HPV PCR products which is obtained by using biotin-labeled MY09/l1 primers. And then, we can see the result of DNA hybridization that streptavidin labelled colloidal gold is responded with hybrid biotin. Lateral flow membrane array developed in this study confirms major HPV type economically and conveniently compared with existing HPV DNA chip method.
Keywords
DNA array; human papillomavirus (HPV); lateral flow membrane;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Corstjens, P., M. Zuiderwijk, A. Brink, S. Li, H. Feindt, R.S. Niedbala, and H. Tanke. 2001. Use of up-converting phosphor reporters in lateral-flow assays to detect specific nucleic acid sequences: A rapid, sensitive DNA test to identify human papillomavirus type 16 infection. Clin. Chem. 47, 1885-1893   PUBMED
2 Prendiville, W. and P. Davies. 2004. The human papillomavirus. In W. Prendiville and P. Davis (eds.), The Health Professionals HPV Handbook: Human papillomavirus and cervical cancer, 1 of 3rd ed., p. 11-26. Taylor and Francis, Oxford
3 De Roda Husman, A.M., J.M.M. Walboomers, A.J.C. Van De Brule, C.J.L.M. Meijer, and P.J.F. Snijders. 1995. The use of general primers GP5 and GP6 elongated at their 3' ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J. Gen. Virol. 76, 1057-1062   DOI   ScienceOn
4 Shyu, J.S., C.J. Chen, C.C. Chiu, S.C. Huang, and H.J. Harn. 2001. Correlation of human papillomavirus 16 and 18 with cervical neoplasia in histological typing and clinical stage in Taiwan: an in-situ polymerase chain reaction approach. J. Surg. Oncol. 78, 101-109   DOI   ScienceOn
5 Zehbe, I. and E. Wilander. 1997. Human papillomavirus infection and invasive cervical neoplasia: a study of prevalence and morphology. J. Pathol. 181,
6 Grabarek, Z. and J. Gergely. 1990. Zero-length crosslinking procedure with the use of active esters. Anal. Biochem. 185, 131-135   DOI   ScienceOn
7 Snowden, K. and M. Hommel. 1991. Antigen detection immunoassay using dipsticks and colloidal dyes. J. Immunol. Methods 140, 57-65   DOI   ScienceOn
8 De Villiers, E.M., C. Fauquet, T.R. Broker, H.U. Bernard, and H. zur Hausen. 2004. Classification of papillomaviruses. Virology 324, 17-27   DOI   ScienceOn
9 Luxton, J. and P. Shepherd. 2001. Human papillomavirus antigens and T-cell recognition. Curr. Opin. Infect. Dis. 14, 139-143   DOI   ScienceOn
10 Lucocq, J.M. and W. Baschong. 1986. Preparation of protein colloidal gold complexes in the presence of commonly used buffers. Eur. J. Cell Biol. 42, 332-337   PUBMED
11 Manos, M.M., Y. Ting, D.K. Wright, A.J. Lewis, T.R. Broker, and S.M. Wolinsky. 1989. The use of polymerase chain reaction amplification for the detection of genital human papillomaviruses. Cancer Cell. 7, 209-214   DOI   ScienceOn
12 Baay, M.F., W.A. Tjalma, J. Weyler, G. Goovaerts, P. Buytaert, E.A. van Marck, F. Lardon, and J.B. Vermorken. 2001. Human papillomavirus infection in the female population of Antwerp, Belgium: prevalence in healthy women, women with premalignant lesions and cervical cancer. Eur. J. Gynaecol. Oncol. 22, 204- 208   PUBMED
13 Sotlar, K., D. Diemer, A. Dethleffs, Y. Hack, A. Stubner, N. Vollmer, S. Menton, M. Menton, K. Dietz, D. Wallwiener, R. Kandolf, and B. Bltmann. 2003. Detection and typing of human papillomavirus by E6 nested multiplex PCR. J. Clin. Microbiol. 3176-3184
14 Smits, H.L., L.M. Tieben, S.P. Tjong-A-Hung, M.F. Jebbink, R.P. Minnaar, C.L. Jansen, and J. Ter Schegget. 1992. Detection and typing of human papillomaviruses in fixed and stained archival cervical smears by a consensus polymerase chain reaction and direct sequence analysis allowing the identification of a broad spectrum of human papillomavirus types. J. Gen. Virol. 73, 3263-3268   DOI   ScienceOn
15 Van Den Brule, A.J.C., J.M.M. Walboomers, M. Du Maine, P. Kenemans, and C.J.L.M. Meijer. 1991. Difference in prevalence of human papillomavirus genotypes in cytomorphologically normal cervical smears is associated with a history of cervical intraepithelial neoplasia. Int. J. Cancer 48, 404-408   DOI
16 Iwasawa, A., P. Nieminen, M. Lehtinen, and J. Paavonen. 1996. Human papillomavirus DNA in uterine cervix squamous cell carcinoma and adenocarcinoma detected by polymerase chain reaction. Cancer 77, 2275-2279   DOI   ScienceOn
17 Stuyver, L., R. Rossau, A. Wyseur, M. Duhamel, B. Vanderborght, H. Van Henverswyn, and G. Maertens. 1993. Typing of hepatitis C virus isolates and characterization of new subtypes using a line probe assay. J. Gen. Virol. 74, 1093-1102   DOI   ScienceOn
18 Pease, A.C., D. Solas, E.J. Sullivan, M.T. Cronin, C.P. Holmes, and S.P. Fodor. 1994. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. USA 91, 5022-5026
19 Jacobs, M.V., J.M. Walboomers, P.J. Snijders, F.J. Voorhorst, R.H. Verheijen, N. Fransen-Daalmeijer, and C.J. Meijer. 2000. Distribution of 37 mucosotropic HPV types in women with cytologically normal cervical smears: the age-related patterns for high-risk and low-risk types. Int. J. Cancer 87, 221-227   DOI   ScienceOn