• Title/Summary/Keyword: Chip Encapsulation Process

Search Result 19, Processing Time 0.021 seconds

A Study on Optimal Process Conditions for Chip Encapsulation (반도체 칩 캡슐화 공정의 최적조건에 관한 연구)

  • 허용정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.477-480
    • /
    • 1995
  • Dccisions of optimal filling conditions for the chip encapsulation have been done primarily by an ad hoc use of expertise accumulated over the years because the chip encapsulation process is quite complicated. The current CAE systems do not provide mold designers with necessary knowledge of the chip encapsulation for the successful design of optimal filling except flow simulation capability. There have been no attempts to solve the optimal filling problem in the process of the chip encapsulation. In this paper, we have constructed an design system for optimal filling to avoid short shot in the chip encapsulation process which combines an optimization methodology with CAE software.

  • PDF

A Multi-Level Knowledge-Based Design System for Semiconductor Chip Encapsulation

  • Huh, Y.J.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.1
    • /
    • pp.43-48
    • /
    • 2002
  • Semiconductor chip encapsulation process is employed to protect the chip and to achieve optimal performance of the chip. Expert decision-making to obtain the appropriate package design or process conditions with high yields and high productivity is quite difficult. In this paper, an expert system for semiconductor chip encapsulation has been constructed which combines a knowledge-based system with CAE software.

  • PDF

A Dual-Level Knowledge-Based Synthesis System for Semiconductor Chip Encapsulation

  • Yong Jeong, Heo
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.154-159
    • /
    • 2003
  • Semiconductor chip encapsulation process is employed to protect the chip and to achieve optimal performance of the chip. Expert decision-making to obtain the appropriate package design or process conditions with high yields and high productivity is quite difficult. In this paper, an expert system for semiconductor chip encapsulation has been constructed which combines a knowledge-based system with CAE software.

  • PDF

Reduction of Wire Sweep during Chip Encapsulation by Runner Balancing and Ram Control (반도체 칩 캡슐화 공정에 있어서 와이어 스윕(wire sweep) 최소화에 관한 연구)

  • Han, S.;Huh, Y.J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.13-21
    • /
    • 1996
  • In this paper, methods to reduce wire sweep during the chip-encapsulation process have been studide. Two methods have been tried for this purpose, namely runner balancing and ram velocity control. Runner balancing has been achieved automatically by using a computer program. Ram-velocity control has been achieved using empirical rules and results from a flow simulation of the encapsulation process. A mold which has 12 cavities for chip has been used as a case study. The simulation results show that the wire sweep obtained from the optimal process condition is about 1/5 of that from initial, unoptimized condition.

  • PDF

A Study on a Knowledge-Based Design System for Chip Encapsulation (반도체 칩의 캡슐화 성형을 위한 지식형 설계시스템에 관한 연구)

  • 허용정;한세진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.99-106
    • /
    • 1998
  • In this paper, we have constructed an expert system for semiconductor chip encapsulation which combines a knowledge-based system with CAE software. The knowledge-base module includes heuristic and pre analysis knowledge for evaluation and redesign. Evaluation of the initial design and generation of redesign recommendations can be developed from the rules as applied to a given chip package. The CAE programs can be used for simulating the filling and packing stage of encapsulation process. The expert system is a new tool which enables package design or process conditions with high yields and high productivity.

  • PDF

Effects of Encapsulation Layer on Center Crack and Fracture of Thin Silicon Chip using Numerical Analysis (봉지막이 박형 실리콘 칩의 파괴에 미치는 영향에 대한 수치해석 연구)

  • Choa, Sung-Hoon;Jang, Young-Moon;Lee, Haeng-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Recently, there has been rapid development in the field of flexible electronic devices, such as organic light emitting diodes (OLEDs), organic solar cells and flexible sensors. Encapsulation process is added to protect the flexible electronic devices from exposure to oxygen and moisture in the air. Using numerical simulation, we investigated the effects of the encapsulation layer on mechanical stability of the silicon chip, especially the fracture performance of center crack in multi-layer package for various loading condition. The multi-layer package is categorized in two type - a wide chip model in which the chip has a large width and encapsulation layer covers only the chip, and a narrow chip model in which the chip covers both the substrate and the chip with smaller width than the substrate. In the wide chip model where the external load acts directly on the chip, the encapsulation layer with high stiffness enhanced the crack resistance of the film chip as the thickness of the encapsulation layer increased regardless of loading conditions. In contrast, the encapsulation layer with high stiffness reduced the crack resistance of the film chip in the narrow chip model for the case of external tensile strain loading. This is because the external load is transferred to the chip through the encapsulation layer and the small load acts on the chip for the weak encapsulation layer in the narrow chip model. When the bending moment acts on the narrow model, thin encapsulation layer and thick encapsulation layer show the opposite results since the neutral axis is moving toward the chip with a crack and load acting on chip decreases consequently as the thickness of encapsulation layer increases. The present study is expected to provide practical design guidance to enhance the durability and fracture performance of the silicon chip in the multilayer package with encapsulation layer.

전문가시스템 기법을 이용한 칩 캡슐화 성형설계 시스템

  • 허용정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.588-592
    • /
    • 1996
  • In this paper, we have constructed an expert system for semiconductor chip encapsulation which combines a knowledge-based system with CAE software. The knowledge-base module includes heuristic and pre-analysis knowledge for evaluation and redesign. Evaluation of the initial design and generation of redesign recommendations can be developed from the rules as applied to a given chip Package. The CAE programs can be used for simulating the filling and packing stage of encapsulation process. The expert system is a new tool which enables package design or process conditions with high yields and high productivity.

  • PDF

Design Analysis in a Cavity with Leadframe during Semiconductor Chip Encapsulation (반도체 칩 캡슐화(encapsulation)를 위한 트랜스퍼 금형 캐비티(cavity)에서의 설계 해석 및 실험에 관한 연구)

  • Han, Sejin;Huh, Yong-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.91-99
    • /
    • 1995
  • An effort has been made to more accurately analyze the flow in the chip cavity, particularly to model the flow through the openings in the leadframe and correctly treat the thermal boundary condition at the leadframe. The theoretical analysis of the flow has been done by using the Hele- Shaw approximation in each cavity separated by a leadframe. The cross-flow through the openings in the leadframe has been incorporated into the Hele-Shaw formulation as a mass source term. The temperature of the leadframe has been calculated based on energy balance in the leadframe. The flow behavior in the leadframe has been verified experimentally. In the experiment, a transparent mold and clear fluid have been used for flow visualization. Comparisons were made between the calculation and experimental results which showed a good agreement.

  • PDF

Flow Analysis and Process Conditions Optimization in a Cavity during Semiconductor Chip Encapsulation (반도체 칩 캡슐화성형 유동해석 및 성형조건 최적화에 관한 연구)

  • 허용정
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.67-72
    • /
    • 2001
  • An Effort has been made to more accurately analyze the flow in the chip cavity, particularly to model the flow through the openings in the leadframe and correctly treat the thermal boundary condition at the leadframe. The theoretical analysis of the flow has been done by using the Hele-Shaw approximation in each cavity separated by a leadframe. The cross-flow through the openings in the leadframe has been incorporated into the Hele-Shaw formulation as a mass source term. The optimization program based on the complex method integrated with flow analysis program has been successfully used to obtain the optimal filling conditions to avoid short shot.

  • PDF

A Study of Wire Sweep, Pre-conditioning and Paddle Shift during Encapsulation of Semiconductor Chips (반도체 칩 캡슐화 성형 공정에 있어서 와이어 스윕 및 패들 변형에 관한 연구)

  • Han, Se-Jin;Heo, Yong-Jeong;Lee, Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.102-110
    • /
    • 2001
  • In this paper, methods to analyze wire sweep and paddle shift during the semiconductor ship-encapsulation process have been studied. The analysis of wire sweep includes flow-field analysis in a complicated geometry, drag-force calculation for given flow of fluid, and wire-deformation calculation for given loads. The paddle-shift analysis is used to analyze the deformation of the paddle due to the pressure difference in two cavities. the analysis is done using either analytical solutions or numerical simulation. The analytical solution is used for rough but fast calculation of wire sweep. The numerical solution is used for more accurate calculation of wire-sweep. The numerical results of wire sweep show good agreements with the experimental ones.

  • PDF