• Title/Summary/Keyword: Chimera

Search Result 141, Processing Time 0.027 seconds

Implementation of real time operating system (실시간 운영 체제의 구현)

  • 박병현;이진수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.347-351
    • /
    • 1991
  • We propose a real time kernel chimera implemented under AT&T UNIX motorola versoin, Carnegie Mellon Univ. in U.S first developed chimera using SUN Worstation with Berkley UNIX based on VMEbus. The major differences between Canegie Mellon's and ours are downloading program and communication method between host and target. Original chimera used device driver but we used UNIX system call corresponding to shared memory when user downloads program and communicates. We modified kernel itself because the two different UNIX have different link editor.

  • PDF

Full flow analysis around a Car-like body using Chimera grid technique (Chimera 격자 기법을 이용한 Car-like body 주위의 전체 유동 해석)

  • Oh S. W.;Park W. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.86-91
    • /
    • 1997
  • This paper describes analysis of complex flow around Car-like body using Chimera grid technique. As a computational algorithm, Pullboat and Chaussee's Diagonal algorithm is selected to reduce computational time. Introducing hole points flag to this Diagonal algorithm, an algorithm for Chimera grid is generated easily. This study solves 3-D unsteady incompressible Navier-Stokes equations on a non-orthogonal curvilinear coordinate system using second-order accurate schemes for the time derivatives, and third/second-order scheme for the spatial derivatives. The Marker-and-Cell concept is applied to efficiently solve continuity equation. The fourth-order artificial damping is added to the continuity equation for numerical stability, It has concluded that the results of present study properly agree with physical flow phenomena.

  • PDF

APPLICATION OF MOVING LEAST SQUARE METHOD IN CHIMERA GRID METHOD (중첩격자에 대한 이동최소자승법 적용 연구)

  • Lee, K.;Lee, S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.17-22
    • /
    • 2007
  • Chimera grid Method is widely used in Computational Fluid Dynamics due to its simplicity in constructing grid system over complex bodies. Especially, Chimera grid method is suitable for unsteady flow computations with bodies in relative motions. However, interpolation procedure for ensuring continuity of solution over overlapped region fails when so-call orphan cells are present. We have adopted MLS(Moving Least Squares) method to replace commonly used linear interpolations in order to alleviate the difficulty associated with orphan cells. MSL is one of interpolation methods used in mesh-less methods. A number of examples with MLS are presented to show the validity and the accuracy of the method.

  • PDF

A Grid Adaptation Method Using the Chimera and Patched Grid Systems (중첩격자계와 접합격자계를 이용한 적응격자 기법)

  • Kim, De-Hee;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.17-25
    • /
    • 2005
  • A grid adaptation method within systems of chimera and patched grids is presented. Problem domains are divided into near-body and off-body fields. Near-body field is filled with curvilinear body-fitted grids that extend only a short distance from body surfaces and connected to other grid systems via chimera domain connectivity method. Off-body field is filled with patched uniform cartesian grids of varying levels of refinement. This method gives flexibility in grid generation and efficient adaptation capability. Several numerical experiments including 2D store separation were performed to show the performance of the proposed adaptation method.

Verification of Hovering Rotor Analysis Code Using Overlapped Grid (중첩격자를 이용한 제자리비행 로터 해석 코드의 수치특성)

  • Kim, Jee-Woong;Park, Soo-Hyung;Yu, Yung-Hoon;Kim, Eu-Gene;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.719-727
    • /
    • 2008
  • A 3-D compressible Navier-Stokes solver using overlapped grids is developed to predict a flow-field around a hovering rotor. The flow solver is verified by a parametric study with the grid spacing of wake grid, spatial accuracy and turbulence model. Computations are performed with different Chimera grid systems. Computational results are compared with the experimental data of Caradonna et al. for both blade loading and the tip vortex behavior. Numerical results show good agreements with experiments for the distribution of surface pressure and tip vortex behavior. Pressure distributions over the blade have marginal differences for different numerical methods, whereas large discrepancies are seen in the prediction of the wake behavior. Results unexpectedly show that the vortex strength from an automated cut-paste Chimera grid is weaker than that from the conventional Chimera grid.

Numerical analysis of flow field around an automobile with variation of yaw angles (측풍의 편향각 변화에 따른 자동차 주위의 유동해석)

  • Kang D. M.;Jung Y. R.;Park W. G.;Ha S. D.
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.1-11
    • /
    • 1999
  • This paper describes the flow field analysis of an automobile with crosswind effects of 15°, 30° 45° and 60° of yaw angles. The governing equations of the 3-D incompressible Navier-Stokes equations are solved by the iterative time marching scheme. The Chimera grid technique has been applied to efficiently simulate the flow around the side-view mirror. The computated surface pressure coefficients have been compared with experimental results and a good agreement has been achieved. The A- and C-pillar vortex and other flow phenomena around the ground vehicle are evidently shown. The variation of aerodynamic coefficients of drag, lift, side force and moments with respect to yaw angle is systematically studied.

  • PDF

APPLICATION OF MOVING LEAST SQUARE METHOD IN CHIMERA GRID METHOD (중첩격자에 대한 이동최소자승법 적용 연구)

  • Lee, K.;Lee, S.;Cho, J.Y.
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.49-56
    • /
    • 2008
  • Chimera grid methods have been widely used in Computational Fluid Dynamics due to its simplicity in constructing grid systems over complex bodies, and suitability for unsteady flow computations with bodies in relative motion. However, the interpolation procedure for ensuring the continuity of the solution over overlapped regions fails when the so-called orphan cells are present. We have adopted the MLS(Moving Least Squares) method to replace commonly used linear interpolations in order to alleviate the difficulty associated with the orphan cells. MLS is one of the interpolation methods used in mesh-less methods. A number of examples with MLS are presented to show the validity and the accuracy of the method.

PARALLEL IMPROVEMENT IN STRUCTURED CHIMERA GRID ASSEMBLY FOR PC CLUSTER (PC 클러스터를 위한 정렬 중첩 격자의 병렬처리)

  • Kim, Eu-Gene;Kwon, Jang-Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.157-162
    • /
    • 2005
  • Parallel implementation and performance assessment of the grid assembly in a structured chimera grid approach is studied. The grid assembly process, involving hole cutting and searching donor, is parallelized on the PC cluster. A message passing programming model based on the MPI library is implemented using the single program multiple data(SPMD) paradigm. The coarse-grained communication is optimized with the minimized memory allocation because that the parallel grid assembly can access the decomposed geometry data in other processors by only message passing in the distributed memory system such as a PC cluster. The grid assembly workload is based on the static load balancing tied to flow solver. A goal of this work is a development of parallelized grid assembly that is suited for handling multiple moving body problems with large grid size.

  • PDF

Large Amplitude Heave and Roll Simulations by the Chimera RANS Method

  • Kang, Chang-Ho
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • An oscillating body motion with extremely large amplitude has been studied using the viscous flow solver. Time simulations of oscillating ship hull in prescribed heave and roll motions are presented using RANS method with FAM approach (Chen, 1995). For viscous flows, laminar flow and turbulent flow with $textsc{k}$-$\varepsilon$ model are considered and compared. The viscous flow solver of RANS method is performed together with a Chimera type of multi-block grid system to demonstrate the advantage of accurate and efficient zonal approach. In the present study, effects of viscosity and oscillation degree are discussed using Re=1000 and Re=1000000. Large motion of oscillating body shows clear vortex propagation that is not possible for inviscid flow to present.

  • PDF

Numerical Study on Transient Aerodynamics of Moving Flap Using Conservative Chimera Grid Method (보존적 중첩격자기법을 이용한 동적 플랩의 천이적 공력거동에 관한 수치적 연구)

  • Choi S. W.;Chang K. S.;Kim I. S.
    • Journal of computational fluids engineering
    • /
    • v.5 no.2
    • /
    • pp.9-19
    • /
    • 2000
  • Transient aerodynamic response of an airfoil to a moving plane-flap is numerically investigated using the two-dimensional Euler equations with conservative Chimera grid method. A body moving relative to a stationary grid is treated by an overset grid bounded by a 'Dynamic Domain Dividing Line' which has an advantage for constructing a well-defined hole-cutting boundary. A conservative Chimera grid method with the dynamic domain-dividing line technique is applied and validated by solving the flowfield around a circular cylinder moving supersonic speed. The unsteady and transient characteristics of the flow solver are also examined by computations of an oscillating airfoil and a ramp pitching airfoil respectively. The transient aerodynamic behavior of an airfoil with a moving plane-flap is analyzed for various flow conditions such as deflecting rate of flap and free stream Mach number.

  • PDF