• 제목/요약/키워드: Chern-Simons-Higgs equation

검색결과 3건 처리시간 0.016초

A LIOUVILLE THEOREM OF AN INTEGRAL EQUATION OF THE CHERN-SIMONS-HIGGS TYPE

  • Chen, Qinghua;Li, Yayun;Ma, Mengfan
    • 대한수학회지
    • /
    • 제58권6호
    • /
    • pp.1327-1345
    • /
    • 2021
  • In this paper, we are concerned with a Liouville-type result of the nonlinear integral equation of Chern-Simons-Higgs type $$u(x)=\vec{\;l\;}+C_{\ast}{{\displaystyle\smashmargin{2}{\int\nolimits_{\mathbb{R}^n}}}\;{\frac{(1-{\mid}u(y){\mid}^2){\mid}u(y){\mid}^2u(y)-\frac{1}{2}(1-{\mid}u(y){\mid}^2)^2u(y)}{{\mid}x-y{\mid}^{n-{\alpha}}}}dy.$$ Here u : ℝn → ℝk is a bounded, uniformly continuous function with k ⩾ 1 and 0 < α < n, $\vec{\;l\;}{\in}\mathbb{R}^k$ is a constant vector, and C* is a real constant. We prove that ${\mid}\vec{\;l\;}{\mid}{\in}\{0,\frac{\sqrt{3}}{3},1\}$ if u is the finite energy solution. Further, if u is also a differentiable solution, then we give a Liouville type theorem, that is either $u{\rightarrow}\vec{\;l\;}$ with ${\mid}\vec{\;l\;}{\mid}=\frac{\sqrt{3}}{3}$, when |x| → ∞, or $u{\equiv}\vec{\;l\;}$, where ${\mid}\vec{\;l\;}{\mid}{\in}\{0,1\}$.

EXISTENCE OF A MULTIVORTEX SOLUTION FOR ${SU(N)_g}{\times}U(1)_l$ CHERN-SIMONS MODEL IN ${R^2}/{Z^2}$

  • Yoon, Jai-Han
    • 대한수학회논문집
    • /
    • 제12권2호
    • /
    • pp.305-309
    • /
    • 1997
  • In this paper we prove the existence of a special type of multivortex solutions of $SU (N)_g \times U(1)_l$ Chern-Simons model. More specifically we prove existence of solutions of the self-duality equations for $(\Phi(x), j =1, \cdots, N$ has the same zeroes. In this case we find that the equation can be reduced to the single semilinear elliptic partial differential equations studied by Caffarelli and Yang.

  • PDF

EXISTENCE THEOREM FOR NON-ABELIAN VORTICES IN THE AHARONY-BERGMAN-JAFFERIS-MALDACENA THEORY

  • Zhang, Ruifeng;Zhu, Meili
    • 대한수학회보
    • /
    • 제54권3호
    • /
    • pp.737-746
    • /
    • 2017
  • In this paper, we discuss the existence theorem for multiple vortex solutions in the non-Abelian Chern-Simons-Higgs field theory developed by Aharony, Bergman, Jafferis, and Maldacena, on a doubly periodic domain. The governing equations are of the BPS type and derived by Auzzi and Kumar in the mass-deformed framework labeled by a continuous parameter. Our method is based on fixed point method.