• 제목/요약/키워드: Chen algorithm

검색결과 496건 처리시간 0.029초

중국 콜드체인 물류에 관한 연구: 혼합유전알고리즘 접근법 (A Study of Cold Chain Logistics in China: Hybrid Genetic Algorithm Approach)

  • 진성;장은미
    • 한국산업정보학회논문지
    • /
    • 제25권6호
    • /
    • pp.159-169
    • /
    • 2020
  • 본 연구에서는 중국에서 유통되고 있는 냉장식품 (-1℃ to 8℃)에 대한 콜드체인 물류(Cold chain logistics: CCL) 모델이 개발되었다. CCL 모델은 분배센터 (Distribution center: DC)와 배포대상지점 (Distribution target points: DT)으로 구성되어 있으며, CCL 모델의 목적함수는 모든 유통업체의 총 유통경로를 최소화하는 것이다. 목적함수를 통한 최적결과 도출을 위해 혼합유전알고리즘(Hybrid genetic algorithm: HGA) 접근법을 제안한다. HGA 접근법은 개선된 K-means 방법과 유전알고리즘을 결합하여 구성된다. 사례연구에서는 유통경로와 유통 가능한 거리 기준으로 CCL 모델에 대해 3개의 시나리오를 고려하였으며, 이를 제안된 HGA접근법을 사용하여 해결하였다. 결과분석을 통해 제안된 HGA접근법을 사용할 경우 유통비용이 절감되고, 마일리지가 약 19%, 20%, 16% 정도 감소됨을 확인하였다.

Analysis and probabilistic modeling of wind characteristics of an arch bridge using structural health monitoring data during typhoons

  • Ye, X.W.;Xi, P.S.;Su, Y.H.;Chen, B.
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.809-824
    • /
    • 2017
  • The accurate evaluation of wind characteristics and wind-induced structural responses during a typhoon is of significant importance for bridge design and safety assessment. This paper presents an expectation maximization (EM) algorithm-based angular-linear approach for probabilistic modeling of field-measured wind characteristics. The proposed method has been applied to model the wind speed and direction data during typhoons recorded by the structural health monitoring (SHM) system instrumented on the arch Jiubao Bridge located in Hangzhou, China. In the summer of 2015, three typhoons, i.e., Typhoon Chan-hom, Typhoon Soudelor and Typhoon Goni, made landfall in the east of China and then struck the Jiubao Bridge. By analyzing the wind monitoring data such as the wind speed and direction measured by three anemometers during typhoons, the wind characteristics during typhoons are derived, including the average wind speed and direction, turbulence intensity, gust factor, turbulence integral scale, and power spectral density (PSD). An EM algorithm-based angular-linear modeling approach is proposed for modeling the joint distribution of the wind speed and direction. For the marginal distribution of the wind speed, the finite mixture of two-parameter Weibull distribution is employed, and the finite mixture of von Mises distribution is used to represent the wind direction. The parameters of each distribution model are estimated by use of the EM algorithm, and the optimal model is determined by the values of $R^2$ statistic and the Akaike's information criterion (AIC). The results indicate that the stochastic properties of the wind field around the bridge site during typhoons are effectively characterized by the proposed EM algorithm-based angular-linear modeling approach. The formulated joint distribution of the wind speed and direction can serve as a solid foundation for the purpose of accurately evaluating the typhoon-induced fatigue damage of long-span bridges.

개선 된 SSD 기반 사과 감지 알고리즘 (Apple Detection Algorithm based on an Improved SSD)

  • 정석용;이추담;왕욱비;진락;손진구;송정영
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.81-89
    • /
    • 2021
  • 자연 조건에서 Apple 감지에는 가림 문제와 작은 대상 감지 어려움이 있다. 본 논문은 SSD 기반의 개선 된 모델을 제안한다. SSD 백본 네트워크 VGG16은 ResNet50 네트워크 모델로 대체되고 수용 필드 구조 RFB 구조가 도입되었다. RFB 모델은 작은 표적의 특징 정보를 증폭하고 작은 표적의 탐지 정확도를 향상시킨다. 유지해야 하는 정보를 필터링하기 위해 주의 메커니즘 (SE)과 결합하면 감지 대상의 의미 정보가 향상된다. 향상된 SSD 알고리즘은 VOC2007 데이터 세트에 대해 학습된다. SSD에 비해 개선 된 알고리즘은 폐색 및 작은 표적 탐지의 정확도를 3.4 % 및 3.9 % 향상 시켰다. 이 알고리즘은 오 탐지율과 누락된 감지율을 향상 시켰다. 본 논문에서 제안한 개선 된 알고리즘은 더 높은 효율성을 갖는다.

Automatic identification and analysis of multi-object cattle rumination based on computer vision

  • Yueming Wang;Tiantian Chen;Baoshan Li;Qi Li
    • Journal of Animal Science and Technology
    • /
    • 제65권3호
    • /
    • pp.519-534
    • /
    • 2023
  • Rumination in cattle is closely related to their health, which makes the automatic monitoring of rumination an important part of smart pasture operations. However, manual monitoring of cattle rumination is laborious and wearable sensors are often harmful to animals. Thus, we propose a computer vision-based method to automatically identify multi-object cattle rumination, and to calculate the rumination time and number of chews for each cow. The heads of the cattle in the video were initially tracked with a multi-object tracking algorithm, which combined the You Only Look Once (YOLO) algorithm with the kernelized correlation filter (KCF). Images of the head of each cow were saved at a fixed size, and numbered. Then, a rumination recognition algorithm was constructed with parameters obtained using the frame difference method, and rumination time and number of chews were calculated. The rumination recognition algorithm was used to analyze the head image of each cow to automatically detect multi-object cattle rumination. To verify the feasibility of this method, the algorithm was tested on multi-object cattle rumination videos, and the results were compared with the results produced by human observation. The experimental results showed that the average error in rumination time was 5.902% and the average error in the number of chews was 8.126%. The rumination identification and calculation of rumination information only need to be performed by computers automatically with no manual intervention. It could provide a new contactless rumination identification method for multi-cattle, which provided technical support for smart pasture.

Outsourcing decryption algorithm of Verifiable transformed ciphertext for data sharing

  • Guangwei Xu;Chen Wang;Shan Li;Xiujin Shi;Xin Luo;Yanglan Gan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권4호
    • /
    • pp.998-1019
    • /
    • 2024
  • Mobile cloud computing is a very attractive service paradigm that outsources users' data computing and storage from mobile devices to cloud data centers. To protect data privacy, users often encrypt their data to ensure data sharing securely before data outsourcing. However, the bilinear and power operations involved in the encryption and decryption computation make it impossible for mobile devices with weak computational power and network transmission capability to correctly obtain decryption results. To this end, this paper proposes an outsourcing decryption algorithm of verifiable transformed ciphertext. First, the algorithm uses the key blinding technique to divide the user's private key into two parts, i.e., the authorization key and the decryption secret key. Then, the cloud data center performs the outsourcing decryption operation of the encrypted data to achieve partial decryption of the encrypted data after obtaining the authorization key and the user's outsourced decryption request. The verifiable random function is used to prevent the semi-trusted cloud data center from not performing the outsourcing decryption operation as required so that the verifiability of the outsourcing decryption is satisfied. Finally, the algorithm uses the authorization period to control the final decryption of the authorized user. Theoretical and experimental analyses show that the proposed algorithm reduces the computational overhead of ciphertext decryption while ensuring the verifiability of outsourcing decryption.

Automatic Segmentation of Product Bottle Label Based on GrabCut Algorithm

  • Na, In Seop;Chen, Yan Juan;Kim, Soo Hyung
    • International Journal of Contents
    • /
    • 제10권4호
    • /
    • pp.1-10
    • /
    • 2014
  • In this paper, we propose a method to build an accurate initial trimap for the GrabCut algorithm without the need for human interaction. First, we identify a rough candidate for the label region of a bottle by applying a saliency map to find a salient area from the image. Then, the Hough Transformation method is used to detect the left and right borders of the label region, and the k-means algorithm is used to localize the upper and lower borders of the label of the bottle. These four borders are used to build an initial trimap for the GrabCut method. Finally, GrabCut segments accurate regions for the label. The experimental results for 130 wine bottle images demonstrated that the saliency map extracted a rough label region with an accuracy of 97.69% while also removing the complex background. The Hough transform and projection method accurately drew the outline of the label from the saliency area, and then the outline was used to build an initial trimap for GrabCut. Finally, the GrabCut algorithm successfully segmented the bottle label with an average accuracy of 92.31%. Therefore, we believe that our method is suitable for product label recognition systems that automatically segment product labels. Although our method achieved encouraging results, it has some limitations in that unreliable results are produced under conditions with varying illumination and reflections. Therefore, we are in the process of developing preprocessing algorithms to improve the proposed method to take into account variations in illumination and reflections.

A Novel Redundant Data Storage Algorithm Based on Minimum Spanning Tree and Quasi-randomized Matrix

  • Wang, Jun;Yi, Qiong;Chen, Yunfei;Wang, Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권1호
    • /
    • pp.227-247
    • /
    • 2018
  • For intermittently connected wireless sensor networks deployed in hash environments, sensor nodes may fail due to internal or external reasons at any time. In the process of data collection and recovery, we need to speed up as much as possible so that all the sensory data can be restored by accessing as few survivors as possible. In this paper a novel redundant data storage algorithm based on minimum spanning tree and quasi-randomized matrix-QRNCDS is proposed. QRNCDS disseminates k source data packets to n sensor nodes in the network (n>k) according to the minimum spanning tree traversal mechanism. Every node stores only one encoded data packet in its storage which is the XOR result of the received source data packets in accordance with the quasi-randomized matrix theory. The algorithm adopts the minimum spanning tree traversal rule to reduce the complexity of the traversal message of the source packets. In order to solve the problem that some source packets cannot be restored if the random matrix is not full column rank, the semi-randomized network coding method is used in QRNCDS. Each source node only needs to store its own source data packet, and the storage nodes choose to receive or not. In the decoding phase, Gaussian Elimination and Belief Propagation are combined to improve the probability and efficiency of data decoding. As a result, part of the source data can be recovered in the case of semi-random matrix without full column rank. The simulation results show that QRNCDS has lower energy consumption, higher data collection efficiency, higher decoding efficiency, smaller data storage redundancy and larger network fault tolerance.

Robot Manipulator Visual Servoing via Kalman Filter- Optimized Extreme Learning Machine and Fuzzy Logic

  • Zhou, Zhiyu;Hu, Yanjun;Ji, Jiangfei;Wang, Yaming;Zhu, Zefei;Yang, Donghe;Chen, Ji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권8호
    • /
    • pp.2529-2551
    • /
    • 2022
  • Visual servoing (VS) based on the Kalman filter (KF) algorithm, as in the case of KF-based image-based visual servoing (IBVS) systems, suffers from three problems in uncalibrated environments: the perturbation noises of the robot system, error of noise statistics, and slow convergence. To solve these three problems, we use an IBVS based on KF, African vultures optimization algorithm enhanced extreme learning machine (AVOA-ELM), and fuzzy logic (FL) in this paper. Firstly, KF online estimation of the Jacobian matrix. We propose an AVOA-ELM error compensation model to compensate for the sub-optimal estimation of the KF to solve the problems of disturbance noises and noise statistics error. Next, an FL controller is designed for gain adaptation. This approach addresses the problem of the slow convergence of the IBVS system with the KF. Then, we propose a visual servoing scheme combining FL and KF-AVOA-ELM (FL-KF-AVOA-ELM). Finally, we verify the algorithm on the 6-DOF robotic manipulator PUMA 560. Compared with the existing methods, our algorithm can solve the three problems mentioned above without camera parameters, robot kinematics model, and target depth information. We also compared the proposed method with other KF-based IBVS methods under different disturbance noise environments. And the proposed method achieves the best results under the three evaluation metrics.

Radiation shielding optimization design research based on bare-bones particle swarm optimization algorithm

  • Jichong Lei;Chao Yang;Huajian Zhang;Chengwei Liu;Dapeng Yan;Guanfei Xiao;Zhen He;Zhenping Chen;Tao Yu
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2215-2221
    • /
    • 2023
  • In order to further meet the requirements of weight, volume, and dose minimization for new nuclear energy devices, the bare-bones multi-objective particle swarm optimization algorithm is used to automatically and iteratively optimize the design parameters of radiation shielding system material, thickness, and structure. The radiation shielding optimization program based on the bare-bones particle swarm optimization algorithm is developed and coupled into the reactor radiation shielding multi-objective intelligent optimization platform, and the code is verified by using the Savannah benchmark model. The material type and thickness of Savannah model were optimized by using the BBMOPSO algorithm to call the dose calculation code, the integrated optimized data showed that the weight decreased by 78.77%, the volume decreased by 23.10% and the dose rate decreased by 72.41% compared with the initial solution. The results show that the method can get the best radiation shielding solution that meets a lot of different goals. This shows that the method is both effective and feasible, and it makes up for the lack of manual optimization.

Fast Result Enumeration for Keyword Queries on XML Data

  • Zhou, Junfeng;Chen, Ziyang;Tang, Xian;Bao, Zhifeng;Ling, TokWang
    • Journal of Computing Science and Engineering
    • /
    • 제6권2호
    • /
    • pp.127-140
    • /
    • 2012
  • In this paper, we focus on efficient construction of tightest matched subtree (TMSubtree) results, for keyword queries on extensible markup language (XML) data, based on smallest lowest common ancestor (SLCA) semantics. Here, "matched" means that all nodes in a returned subtree satisfy the constraint that the set of distinct keywords of the subtree rooted at each node is not subsumed by that of any of its sibling nodes, while "tightest" means that no two subtrees rooted at two sibling nodes can contain the same set of keywords. Assume that d is the depth of a given TMSubtree, m is the number of keywords of a given query Q. We proved that if d ${\leq}$ m, a matched subtree result has at most 2m! nodes; otherwise, the size of a matched subtree result is bounded by (d - m + 2)m!. Based on this theoretical result, we propose a pipelined algorithm to construct TMSubtree results without rescanning all node labels. Experiments verify the benefits of our algorithm in aiding keyword search over XML data.