
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, Jan. 2018 227
Copyright ⓒ2018 KSII

A Novel Redundant Data Storage
Algorithm Based on Minimum Spanning

Tree and Quasi-randomized Matrix

Jun Wang1,2, Qiong Yi1,2, Yunfei Chen3, and Yue Wang1,2
1 Department of Communication and Information Engineering

Nanjing University of Posts and Telecommunications, Nanjing, 210003, China
[e-mail: wang_jun@njupt.edu.cn]

2 Key Lab of Broadband Wireless Communication and Sensor Network Technology (NUPT), Ministry of
Education, Nanjing, 210003;

[e-mail: q12010202@njupt.edu.cn]
3 School of Engineering, University of Warwick, Coventry, U.K. CV4 7AL

*Corresponding author: Jun Wang

Received October 31, 2016; revised January 5, 2017; accepted August 9, 2017;
published January 31, 2018

Abstract

For intermittently connected wireless sensor networks deployed in hash environments,
sensor nodes may fail due to internal or external reasons at any time. In the process of data
collection and recovery, we need to speed up as much as possible so that all the sensory
data can be restored by accessing as few survivors as possible. In this paper a novel
redundant data storage algorithm based on minimum spanning tree and quasi-randomized
matrix—QRNCDS is proposed. QRNCDS disseminates k source data packets to n sensor
nodes in the network (n>k) according to the minimum spanning tree traversal mechanism.
Every node stores only one encoded data packet in its storage which is the XOR result of
the received source data packets in accordance with the quasi-randomized matrix theory.
The algorithm adopts the minimum spanning tree traversal rule to reduce the complexity of
the traversal message of the source packets. In order to solve the problem that some source
packets cannot be restored if the random matrix is not full column rank, the
semi-randomized network coding method is used in QRNCDS. Each source node only
needs to store its own source data packet, and the storage nodes choose to receive or not. In
the decoding phase, Gaussian Elimination and Belief Propagation are combined to improve
the probability and efficiency of data decoding. As a result, part of the source data can be

This work is supported by National Nature Science Foundation of China 61401234, 61271234, PAPD Project
of Jiangsu Higher Education Institutions and Jiangsu government scholarship for overseas studies.

https://doi.org/10.3837/tiis.2018.01.011 ISSN : 1976-7277

228 Jun Wang et al.: A Novel Redundant Data Storage Algorithm Based on Minimum Spanning Tree
and Quasi-randomized Matrix

recovered in the case of semi-random matrix without full column rank. The simulation
results show that QRNCDS has lower energy consumption, higher data collection
efficiency, higher decoding efficiency, smaller data storage redundancy and larger network
fault tolerance.

Keywords: intermittently connected wireless sensor networks, data storage algorithm,
minimum spanning tree, network coding, quasi-randomized matrix

1. Introduction

Wireless sensor networks [1-2] are data-centric networks, consisting of a large number of
sensor nodes which have perception, processing, storage and communication capabilities.
With the emergence of a series of new sensory devices such as video cameras, RFID
readers and seismometers, a variety of new sensor network applications have been
developed. This include underwater or ocean sensor networks [3], underground sensor
networks [4], volcanic eruptions monitoring sensor networks [5-6], and et al. The majority
of above networks are deployed in challenging environments. In such scenarios, base
stations are usually far away from the sensor networks due to environmental constraints [7].
And sensor nodes including sink nodes may fail due to various reasons such as
storage/energy depletion, hardware failures, natural destructions and even animal attacks

[8]. The failures of sensor nodes will lead to data loss and communication link’s
breakdown. Therefore, how to design an effective data storage algorithm to preserve
sensory data in intermittently connected sensor networks has become a hot research area in
recent years.

This paper focuses on the data storage problem of intermittently connected wireless
sensor networks [9] (ICWSNs) deployed in hash environments. Such networks are usually
unattended, which means that sink nodes may appear periodically to collect sensory data,
or fixed sink nodes are vulnerable to natural disasters and artificial attacks. In order to
prevent data loss caused by node failures, redundant fault-tolerant measures [10-15] must
be taken to store the sensory data throughout the network. For the purpose of realizing
efficient storage and fast collection of sensory data, an energy-efficient redundant data
storage algorithm QRNCDS based on MST (Minimum Spanning Tree) and
quasi-randomized network coding is proposed in this paper. QRNCDS has following
characteristics: 1) The traversal message complexity is reduced to ()nO by utilizing MST
rule(source nodes only need to be forwarded n-1 times ; 2) Every sensor node encodes all
the received source data packets into an encoded data packet according to
quasi-randomized matrix theory, which achieves better network fault tolerance n-k; 3) The
data decoding efficiency is improved by utilizing joint decoding method of Gaussian

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 229

Elimination and Belief Propagation algorithm. Data Collectors just need to visit k+10
survived nodes to achieve the decoding probability of 100%.

The rest of this paper is organized as follows. Section 2 reviews the related works. In
section 3, we introduce the network model of ICWSNs. Section 4 gives the details and
theoretical analysis of the QRNCDS algorithm. The extensive simulations are conducted in
section 5. Section 6 concludes the paper and points out potential future research directions.

2. Related Work
In the challenging monitoring regions, sensor nodes may become more unreliable due to
the external environment. In order to ensure the availability of sensory data packets, we can
take redundant fault-tolerant approaches to storing them, that is to say, each sensory data
generated by each source node is stored on multiple different nodes in a redundant manner.
When some nodes fail, data collector can recover the sensory data by visiting other
survived nodes. Currently, there are two typical redundant methods: one is based on
replicas [10-11] and the other one is based on network coding [12-15].

Redundant data storage methods based on replicas duplicate each sensory data into
several replicas which incur extra overhead. Especially when the node’s failure probability
becomes high, in order to ensure the persistency and availability of sensory data, the
network needs to store a huge number of redundant replicas, which is a great challenge for
nodes with limited storage space and causes great storage waste. In addition, in the data
collection process, with the increase in access nodes, the rate of collecting new source data
decreases significantly, which is unfavorable to the rapid recovery of data. At the same
time, redundant data storage methods based on network coding can overcome this
shortcoming by encoding the k source data packets into n encoded data packets and storing
them on every node in the network. In the network-coding based methods, each sensor
node can carry multiple source data packets’ information by just consuming one storage
space, which greatly improves the utilization of nodes’ storage space and eases the storage
pressure of sensor nodes. The most representative and related algorithms based on network
coding are LTCDS-I algorithm [14] and a low visiting cost storage algorithm (LVCDS)
[15].

On the basis of LT codes, Aly [14] proposes a new kind of distributed data storage
algorithm for WSNs called LTCDS-I. LTCDS-I algorithm is based on a certain degree
distribution function (Ideal Soliton distribution or Robust Soliton distribution). Each
sensor node stores an encoded data packet by first randomly choosing a degree value d
from the degree distribution, and then chooses d distinct packets from k source packets
uniformly with probability k/d . The encoded data packet is the bitwise exclusive-or
(XOR) of the d chosen source packets. LTCDS-I can be easily implemented, but its
traversal speed is very slow. In order to transverse the whole network nodes, each source
packet must be forwarded over nlnn.54 times. Besides, its decoding performance is
limited to the collecting order of encoded data packets with different degrees. In the early
decoding stage, since fewer packets with low degrees are collected, most packets with high
degrees cannot be successfully decoded, the decoding efficiency is very low at this time.

230 Jun Wang et al.: A Novel Redundant Data Storage Algorithm Based on Minimum Spanning Tree
and Quasi-randomized Matrix

And to fully recover all the source packets, collector needs to visit a large number of
survived nodes, which will incur high energy cost.

With the purpose of overcoming the drawbacks of LTCDS-I algorithm, Xiao Yilong
[15] proposes a new storage algorithm (LVCDS) with low transversal cost. LVCDS
preferentially forwards source packets to nodes that have been visited fewer times and have
more neighboring nodes according to the directional random walk rule during the traversal
process of source packets, which can reduce invalid forwarding of source packets to some
extents. And compared with LTCDS-I, LVCDS decreases the communication energy
consumption by 55.6%. During the encoding process, LVCDS adopts random coding
instead of LT coding, and in the decoding phase, the collector can successfully recover all
the source data packets from any k+10 survived encoded data packets, which greatly
improves decoding efficiency and reduces decoding cost. However, there are two distinct
limitations in this algorithm: 1) The successful decoding ratio is entirely dependent on the
rank of the random matrix (the coefficient matrix of all the collected encoded
packets).Only when the random matrix is full column rank, can user decode data
successfully and recover all the source packets at one time. Otherwise, no source packets
can be recovered. 2) Although LVCDS halves the number of forwarding of source packets
to nlnn2 , its traversal message complexity still remains ()nlnnO .

In order to develop an efficient data storage scheme, authors in [16] first design a system
that integrates the Virtual Broking Coding (VBC) data storage scheme in the IoT realm.
Then, they propose an algorithm called Dynamic Adaptive Virtual Broking Coding
(DA-VBC) that adapts dynamically the packet redundancy level adopted in VBC to the
optimal redundancy level, regarding the actual condition of the network, in order to ensure
a reliable data storage and data retrieval. But they don’t take the harsh environments into
account. Compared to [16], we consider that in the harsh environment, efficient storage and
rapid collection are two key issues. Based on the combination of the minimum spanning
tree and the semi-random matrix, a new energy efficient and fast decoding algorithm,
QRNCDS, is proposed to simplify the coding process and improve the recovery rate of the
source packet.

In-network storage is an effective technique for avoiding network congestion and
reducing power consumption in continuous data collection in wireless sensor networks.
Preference [17] presents an efficient approach to update data at storage nodes to maintain
data consistency at the storage nodes without decoding out the old data and re-encoding
with new data. They studied a transmission strategy that identifies a set of storage nodes for
each source sensor that minimizes the transmission cost and achieves ubiquitous access by
transmitting sparsely using the sparse matrix theory. In [17] they assume that all sensors
know their locations in the sensor field. But in our paper, each sensor node transmits its
geographic position information to the central coordinator. After receiving all the nodes’
geographic position information, the central coordinator calculates the minimum spanning
tree of the network and sends the related result back to all sensor nodes.

According to the above discussion, it can be seen that the redundant data storage strategy
is more applicable than non-redundant data storage strategy. However, the redundant data
storage strategy based on replicas is extremely wasteful for the storage of the sensor nodes,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 231

especially in harsh environments. Coding-based redundancy storage strategy overcomes
the shortcomings of replicas. It saves storage space and greatly improves the persistence of
the data. But to further enhance its performance in harsh environments, the following three
issues need to be addressed: 1) Most of the existing coding schemes adopt random walk
traversal, the efficiency is low. 2) Most of the existing coding schemes need to access
() ()1 0k ε ε+ > surviving nodes to decode successfully, and the decoding efficiency is low.

3) Simply using the Gaussian Elimination for decoding is not conducive to the restoration
of source data. Once the generated matrix of encoded data packets is not full column rank,
no one source data can be stored.

To solve the problem of slow traversal speed and the low recovery efficiency of source
data packets in the existing coding schemes, we study a redundant quasi-randomized
network coding based data storage algorithm-QRNCDS based on the minimum spanning
tree. In the process of traverse the whole network node, by applying the minimum spanning
tree rules, QRNCDS can reduce the forwarding number of each source packet to n-1 times.
In the coding process, each sensor node will receive data from different source with certain
probability according to the quasi-random matrix. So some nodes in the network only store
a single source data packet which can facilitate the decoding operation. In order to avoid
the situation where the node does not store any data, QRNCDS also sets a cumulative
counter for each sensor node, which ensuring the effective storage of each node, as well as
improving the probability of data survivability and the efficiency of recovery.

3. Network Model
The intermittently connected wireless sensor network studied in this paper can be
represented as an undirected connected graph ()E,VG , where { }n,,,,V 321= is n uniformly
deployed sensor nodes and E is the set of m edges. The system model is shown in
Fig.1.There are three kinds of nodes in the system: source nodes, storage nodes and the
sink node. There are k source nodes in the area, denoted as { }k,,,,Vs 321= , which generate
sensory data (we assume that each data packet generated by each source node has the same
unit size).And n-k storage nodes, who are responsible for storing sensory data for source
nodes. The connections between the sink node and common sensor nodes are intermittent.
In this paper, we assume that all the sensor nodes have the same transmission radius R. In
order to ensure the network’s connectivity, R must satisfy formula (1) [15]:

() 21 /n/nlnbR π≥ (1)

Where b is a constant and is greater than 1.

232 Jun Wang et al.: A Novel Redundant Data Storage Algorithm Based on Minimum Spanning Tree
and Quasi-randomized Matrix

Storage
node

Source
node Sink node Intermittently

connected

R

Fig. 1. System model of intermittently connected wireless sensor network

4. Design of QRNCDS Algorithm and Theoretical Performance
Analysis

To solve the slow traversal problem and improve the low decoding efficiency of existing
algorithms, we design a novel distributed data storage algorithm based on minimum
spanning tree rule and a quasi-randomized matrix.

4.1 Quasi-randomized Matrix
The quasi-randomized matrix introduced in this paper is similar to the random matrix

defined in literature [15] and its specific definition is as follows:
For a matrix () k,,,jn,,,i,rR ijkn 21;21 ===× , if the matrix has k rows meeting the

conditions that in each row only one element’s value is“1”, the remaining elements’ value
are all “0”, and the positions of the element “1” are all different from each other. And the
remaining kn − rows in knR × meet the conditions that all the elements are independent of
each other and following the 0-1 distribution defined as formula (2), then knR × can be called
a quasi-randomized matrix.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 233

{ }

=−
=

==
01
1

efork/klna
efork/klna

erP ij (2)

Where a is a constant and makes 21 /k/klna ≤ .According the definition of the
quasi-randomized matrix, knR × is full column rank. In order to determine the proper value of
coefficient a, we can get the full column rank probability of sub-matrix () kkR ×+′ ε (randomly
selected) of knR × by setting up MATLAB simulation environment. We change the
parameter a and ()nk ≤+ εε to observe the change of the full column rank probability. The
experimental results are shown in Table 1, where 100=n , 30=k . As it can be seen from
the table, with the increase of the parameter a and ε , the full column rank probability of
() kkR ×+′ ε becomes higher. When 2≥a , the full column rank probability of () kkR ×+′ ε reaches

more than 94%. In this paper, in order to ensure the full column rank of quasi-randomized
matrix with higher probability and at the same time make the matrix more sparse, we set a
as 2.5.

Table 1. FULL COLUMN RANK of () kkR ×+′ ε with RESPECT to the PARAMETER a and ε
 4=ε 8=ε 12=ε 16=ε 20=ε

a=1 0.208 0.425 0.624 0.795 0.868

a=1.5 0.611 0.767 0.840 0.906 0.944

a=2 0.941 0.961 0.985 0.992 0.997

a=2.5 0.993 0.999 1 1 1

a=3 0.995 1 1 1 1

4.2 The Fundamentals of QRNCDS Algorithm
In QRNCDS, source packets are traversed from parent nodes to child nodes layer by

layer according to the established minimum spanning tree rooted from source nodes and
each node encodes the received packets with given probability according to the
quasi-randomized matrix theory. The whole algorithm process can be divided into the
following four phases:

1) Initialization phase. Each sensor node transmits its geographic position information to

the central coordinator. After receiving all the nodes’ geographic position information, the
central coordinator calculates the minimum spanning tree of the network and sends the
related result back to all sensor nodes. After receiving the information from the central
coordinator, each sensor node ()nuu ≤≤1 records its neighboring nodes in the

234 Jun Wang et al.: A Novel Redundant Data Storage Algorithm Based on Minimum Spanning Tree
and Quasi-randomized Matrix

MST(Minimum Spanning Tree) into list ()unl , initializes the encoded packet as 0
(()nuYu ≤≤= 10) and empties the received source packets list ()uidl . Each source node
()kvv ≤≤1 encapsulates the sensory data into a source data packet ()vvv X,IDpacket = ,

where vID represents the ID number of the source node and vX represents the sensory data.
To make full use of storage nodes’ available storage space, each storage node
()niki ≤≤+1 adds a counter ()iscount to record the number of different source packets that

have visited it and sets the counter’s initial value to zero(() 0=iscount). The MST must
be calculated again while the network topology is changed by the intermittently connected
environments.

2) Network coding phase. Source data packets are all forwarded layer by layer based on
the MST path. At the starting point, each source node ()kvv ≤≤1 updates its stored encoded
packet as vvv XYY ⊕= , inserts vID into the received packet list ()vidl , and forwards vpacket to
its neighboring nodes in turn according to the neighboring node list ()vnl .

For both source nodes and storage nodes in the network, when receiving ()kvpacketv ≤≤1

from its neighboring node ()nww ≤≤1 , node ()nuu ≤≤1 will first determine whether it is a
source node or not. If u is a source node, it inserts vpacket into its forwarding queue directly.

If node u is a storage node, it will first increase its counter value by 1, and then judge
whether ()uscount is equal to k or not, if () kuscount = and the received source packets’ ID
number list ()uidl is empty, then node u will receive vpacket with the probability of 100% ,
update uY as vu XY ⊕ , and insert vID into ()vidl ; otherwise, node u will receive vpacket with the
probability of k/klna . And after that, node u puts vpacket into the forwarding queue.

Before forwarding vpacket , node u needs to check its neighboring node list ()unl , if ()unl
has only one node w and w is the previous-hop node of vpacket , node u will discard this
packet; otherwise, node u will forward vpacket to all the neighboring nodes except the node
w according to the neighboring node list ()unl .

The flowchart of network coding phase is shown in Fig. 2.

3) Data storage phase. When all network nodes’ forwarding queues are empty, which
means source packets have visited all the leaf nodes in the tree, the network coding process
is finished. At this time, k sensory data have been redundantly stored on the whole network
nodes.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 235

Each source node v(v=1,2,…,k)
updates its encoded data packet

as , insert IDv into the
ID number list idl(v) and forwards

packetv to its neighboring nodes
according to nl(u)

Is node u’s received packet
 packetv a source node？

N
Node u updates

scount(u) as scount(u)
+1

scount(u)<k or
(scount(u)==k and idl(u)

is not empty)？

N

Y

Node u receives packetv，updates its
encoded packet： and

records IDv into idl(u)

Node u generates a
random number: p =

rand(1)

p <alnk / k?

Y

Node u puts
packetvinto the

forwarding
queue.

Y

 Is node u a
leaf node of MST ?

Y

Node u discards
packetv , stop
forwarding.

Node u forwards packetv
to all the neighboring
nodes except previous
hop node according to

nl(u).

vvv XYY ⊕=

vvv XYY ⊕=

N
N

Fig. 2. Flowchart of network coding phase

4) Data decoding phase. At this stage, collector randomly collects η+k survived
encoded packets and the corresponding received source packets’ ID number lists. We
denote these η+k encoded packets as η+= k,,,i,Yi 21 respectively. The column vector
consisting of these η+k encoded packets is denoted as []TkY,,Y,YY η+= 21 . Since each
encoded packet is the linear combination of k source data packets, we can obtain the
coefficient generated matrix () kkG ×+η according to () η+= k,,,i,iidl 21 . On the basis of () kkG ×+η ,
we can obtain the following linear equations(3):

() () ()
() () ()

() () ()
() Y

X

X
X

G

YXk,kGX,kGX,kG

YXk,GX,GX,G
YXk,GX,GX,G

k

kk

kk

k

k

=

⋅⇒

=+⊕⊕+⊕+

=⊕⊕⊕
=⊕⊕⊕

×+

+

2

1

21

221

121

21

22212
12111

η

ηηηη

 (3)

236 Jun Wang et al.: A Novel Redundant Data Storage Algorithm Based on Minimum Spanning Tree
and Quasi-randomized Matrix

According to the non-homogeneous linear equations’ theory, only when
()() ()() kY,GRGR kkkk == ×+×+ ηη can formula (3) have a unique solution. The detailed decoding

steps are as follows:

a) Determine whether the η+k collected packets contain k source data packets or not, if
they already have these k source packets, there is no need to decode; otherwise, continue to
step b);

b) If the coefficient generated matrix () kkG ×+η is full column rank, and the rank of

()()Y,G kk ×+η is k, Gaussian Elimination method is used to decode data; otherwise, skip to
step c);

c) Belief Propagation algorithm is used to decode data. First, we perform progressive

scanning for the matrix to find the row that contains only one element of 1 and record its

position in the matrix as (i,j), where kjki ≤≤+≤≤ 1,1 η . Then, we use the i-th encoded

data packet to recover the j-th source data. After this, we go back to () kkG ×+η , scan all the

elements of the j-th column of () kkG ×+η , set all elements of 1 to 0 and perform an XOR

operation between the corresponding encoded data packet and the recovered j-th source

data. We repeat these steps until we cannot find any rows that contain only one element of

1.

The pseudo-code of the four phases of the QRNCDS is shown in Table 2.

Table 2. PSEUDO-CODE of the four phases of the QRNCDS

1 /* Initialization stage */

2 Each sensor node transmits its geographic position information to the central coordinator.

After receiving all the nodes’ geographic position information, the central coordinator

calculates the network’s minimum spanning tree and sends the results back to sensor nodes.

Each sensor node ()nuu ≤≤1 records its neighboring nodes in the minimum spanning tree into

the list ()unl ;The MST must be calculated again while the network topology is changed by the

intermittently connected environments.

3 for each source node ktov 1=

4 Encapsulate sensory data Xv into the source data packet ()vvv XIDpacket ,= ;

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 237

5 end for

6 for each sensor node ntou 1=

7 Initialize its encoded data packet as 0=uY ;

8 End for

9 for each storage node ntoki 1+=

10 Reset cumulative counter: () 0=iscount ;

11 end for

12 for the network topology is changed

13 Calculate MST again;

14 end for

15 /* Network coding and data storage stage */

16 for each source node ktov 1=

17 Update its encoded data packet as vvv XYY ⊕= and record vID into the ID number list

()vidl ;

18 Forward vpacket to all the neighboring nodes in turn according to ()vnl ;

19 end for

20 for each sensor node ntou 1=

21 for each ktov,packetv 1= that arrives at node u

22 if u is storage node(nuk ≤≤+1), then

23 Update cumulative counter: () () 1+= uscountuscount ;

24 if () kuscount < or (() kuscount == and () φ≠uidl) , then

25 ()1randp = ;

26 if k/klnap < , then

27 Update its encoded data packet as vuu XYY ⊕= and insert vID into ()uidl ;

28 end if

29 else

30 Update its encoded data packet as vuu XYY ⊕= and insert vID into ()uidl ;

31 end if

32 end if

33 Put vpacket into the forwarding queue and check ()unl before forwarding vpacket :

238 Jun Wang et al.: A Novel Redundant Data Storage Algorithm Based on Minimum Spanning Tree
and Quasi-randomized Matrix

34 if ()unl has only one node w and w is the previous-node of vpacket , then

35 vpacket arrives at a leaf node, node u discards vpacket ;

36 else

37 Forward vpacket to all the neighboring nodes except the previous node of vpacket in

 turn according to ()unl ;

38 end if

39 end for

40 end for

41 /* Data decoding stage */

42 Collector randomly visits η+k survived nodes and obtains η+k encoded data packets along

with the corresponding ID number lists;

43 If the η+k have visited nodes contains k source nodes, then

44 Obtain k source data directly;

45 else

46 if the generated matrix () kkG ×+η of the η+k encoded data packets is full column rank, and

the rank of ()()Y,G kk ×+η is k then

47 Utilize Gaussian Elimination method to decode;

48 else

49 Utilize Belief Propagation algorithm to decode;

50 end if

51 end if

4.3 Theoretical Analysis of QRNCDS Algorithm
1) Applicability
Combining the minimum spanning tree traversal rule with quasi-randomized network

coding mechanism, In QRNCDS algorithm, source packets are distributed stored on all
network nodes with minimum energy consumption. When a portion of nodes (including
source nodes and storage nodes) fail, collector can still collect encoded packets from
unfailed nodes and use joint decoding method to recover source data. That’s to say,
QRNCDS can effectively ensure the persistent of sensory data. But considering that in the
initialization phase of QRNCDS, each sensor node needs to communicate with the central
coordinator, which incurs extra communication overhead and such overhead increases as
the network size becomes larger. Therefore, QRNCDS algorithm is not suitable for

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 239

large-scale WSNs.
2) Message Complexity
In the initialization stage of QRNCDS, assuming that the average number of hops

between each sensor node and the central coordinator is h , the total number of
transmissions of location information and minimum spanning tree information is hn2 . In
the network coding stage, k source data packets are transmitted ()kn 1− times. Therefore,
the total message complexity of QRNCDS is ()()knhnO 12 −+ .

3) Storage Cost
Storage cost of each sensor node is consisted of three parts:
a) Neighboring node list storage cost: each node has to store the neighboring nodes’

information of the minimum spanning tree. Assuming that the average number of neighbor
is m , the cost of this storage cost is ()mnO ∗ .

b) Encoded packet storage cost: Since every node can at most store one encoded data
with the same size of the source data, the encode packet storage cost is ()nO .

c) Received source packets’ ID number list storage cost: Since every node can at most
receive k source packets, the cost of the ID number list is ()n*kO .

4）Efficiency of Storage Usage

In this paper, we define the efficiency of storage Usage as the average number of source
packets that each encoded packet contains. In QRNCDS algorithm, since each storage node
have a cumulative counter, when the counter value reaches k and ID number list is empty,
the node will receive the last arrived source packet with the probability of 100%, so the
efficiency of storage usages is greater than or equal to 1, that is to say, there doesn’t exist
empty storage problem.

5) Computation Complexity
Given that the central coordinator and data collector have powerful computation

capability, the computation complexity in both initialization phase and decoding phase will
not be considered in this paper. In the network coding stage, each storage node receives
source packets with probability k/klna , so the average number of source packets that each
storage node receives is about klnak/klnak =⋅ .In other words, each storage node conducts
“XOR” operation klna times. The computation complexity of QRNCDS is
about ()()klnknaO − .

6)Maximum network fault tolerance
The maximum network fault tolerance is defined as the maximum number of nodes that

are allowed to fail simultaneously under the premise of recovering all of the k source data.
Since QRNCDS adopts quasi-randomized network coding mechanism, all the source nodes
just store their own sensory data, when k source nodes survive and the other n-k storage
nodes fail, k source data can still be recovered. And when a portion of source nodes survive,

240 Jun Wang et al.: A Novel Redundant Data Storage Algorithm Based on Minimum Spanning Tree
and Quasi-randomized Matrix

collector has to visit at least k or more survived nodes to recover original k source data.
Therefore, the maximum network fault tolerance of QRNCDS is n-k.

7）Decoding Efficiency

From the Table 1, we can see that when a=2.5 and 8=ε , full column rank probability
of () kkR ×+′ ε is 99.9%. So the collector can successfully recover almost all the source data
packets from any k+10 survived encoded data packets, which greatly improves decoding
efficiency and reduces decoding cost.

5. Performance Evaluation
To verify the performance of the proposed algorithm, we conduct simulation experiments
in the MATLAB environment and compare QRNCDS with three other algorithms:
LTCDS-I [14], LVCDS [15] and M-RLC [17]. The simulation settings are as follows: The
network size is 100100∗ , n sensor nodes are uniformly deployed in the square area, and the
proportion of the source nodes is 30%. Each sensor node’s transmission radius is set to 14
(to ensure the connectivity of the network) and the coefficient a of receiving probability is
set to 2.5.We set the total number of transmission of source packet
as ()1ln ≥= cncnft (According to reference [14], only when random walk steps reach
()nlnnO , can network coverage reaches 100%). The main performance metrics we

investigate are: network coverage performance and decoding performance.

5.1 The Traversal Performance of Source Packets
1) The network coverage
In this paper, we use the definition of network coverage of reference [15], if there is a

two-dimensional random graph T(n, r), the network coverage is defined as: the ratio of the
number of different vertices visited by the random walk to the total number of vertices in
the graph.

In this simulation scenario, the number of sensor nodes is set to 300. Fig. 3 depicts the
network coverage curves of QRNCDS, LTCDS-I and LVCDS respectively, where the
horizontal axis represents the coefficient c of ft (the number of transmission of source
packets), and the vertical axis represents the average network coverage of each source
packet. From the Fig. 3, it can be observed that QRNCDS achieves the best network
coverage performance. Since QRNCDS follows minimum spanning tree rule, no matter
how much the coefficient c is, k source packets can visit all sensor nodes and achieve
network coverage with 100%. LVCDS’s coverage performance comes in second as
expected, since LVCDS adopts directed random walk rule, which greatly reduces the
number of invalid forwarding. When c is equal to 1, the network coverage can reach 98%,
and when c is greater than 2, k source packets can visit every node. Obviously the network
coverage performance of LTCDS-I algorithm based on simple random walk is the worst,
only when the number of transmission is greater than 4.5nlnn(that’s to say, c>4.5), can all
source packets visit every node.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 241

1 1.5 2 2.5 3 3.5 4 4.5 5
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

the coefficient c of ft=cnlnn

th
e

av
er

ag
e

ne
tw

or
k

co
ve

ra
ge

 o
f s

ou
rc

e
da

ta
 p

ac
ke

ts

QRNCDS
LVCDS
LTCDS-I

Fig. 3. The experimental result of source packets’ network coverage

2) The average number of transmission
We investigate the average number of transmission of source packets required by

QRNCDS, LTCDS-I and LVCDS to achieve full network coverage with various network
density. Table 3 shows the results. We observe that with the network density becoming
denser, the average number of forwarding keeps increasing in order to ensure that all the
network nodes can be successfully traversed by source packets. In QRNCDS, each source
packet takes only n-1 hops to cover the whole network, the value is about 9.41%~10.59%
of LVCDS algorithm and 4.11%~5.17% of LTCDS-I algorithm. Thus it can be seen that
adopting QRNCDS algorithm can reduce communication energy greatly. Compared with
LVCDS, it reduces energy consumption by an average of 89.73% and compared with
LTCDS-I, it reduces energy consumption by an average of 95.08%.

Table 3. THE EXPERIMENTAL RESULTS of AVERAGE NUMBER OF FORWARDING
 QRNCDS(f

t1)

LVCDS(ft2

)

LTCDS-I(ft

3)
ft1/ft2(%) ft1/ft3(%)

n=300,k=9

0
299 3176 7283 9.41% 4.11%

n=400,k=1

20
399 3768 8584 10.59% 4.65%

n=500,k=1

50
499 4748 9920 10.51% 5.03%

242 Jun Wang et al.: A Novel Redundant Data Storage Algorithm Based on Minimum Spanning Tree
and Quasi-randomized Matrix

n=600,k=1

80
599 5766 11857 10.39% 5.05%

n=700,k=2

10
699 6770 13775 10.32% 5.07%

n=800,k=2

40
799 7910 15623 10.10% 5.11%

n=900,k=2

70
899 8766 17483 10.26% 5.14%

n=1000,k=

300
999 9442 19307 10.58% 5.17%

5.2 Data Recovery Performance
1)Decoding performance
In this simulation scenario, the total number of sensor nodes in the network is set to 900

and the node failure probability fp is set as 0.3 and 0.8 respectively. Fig. 4 and Fig. 5 show
the average recovery ratio of source data packets. From the two figures, we can see that
when the node failure probability is small (30.p f = , there are adequate survived nodes), the
three algorithms can achieve the goal of successful decoding by collecting a certain number
of survived packets, where LTCDS-I needs to visit about 390 survived nodes to make the
source data recovery ratio reach 1, while QRNCDS and LVCDS only need to visit 280
survived nodes to recover all the original 270 source data, their recovery costs are
approximately reduced by 28.21%. When the node failure probability is comparatively
high (80.p f = which means very few nodes survive in the network), all the algorithms’
successful decoding ratio cannot reach 1. The decoding ratio of LVCDS keeps 0, this can
be explained by the fact that LVCDS utilizes Gaussian Elimination method to decode,
when it collects less than 270 survived packets, the coefficient matrix cannot be full
column rank, so it cannot recover any source packet. For QRNCDS and LTCDS-I, the
Belief Propagation algorithm is used during the decoding process, some portion of source
data still can be recovered. Therefore, compared with the other two algorithms, QRNCDS
is more suitable for working in hash environments. No matter how much the node failure
probability is, QRNCDS can always ensure higher decoding ratio.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 243

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

the number of visited nodes

th
e

av
er

ag
e

re
co

ve
ry

 ra
tio

 o
f s

ou
rc

e
da

ta
 p

ac
ke

ts

QRNCDS
LVCDS
LTCDS-I

Fig. 4. Decoding performance with 30.fp =

0 20 40 60 80 100 120 140 160 180
0

0.05

0.1

0.15

0.2

0.25

the number of visited nodes

th
e

av
er

ag
e

re
co

ve
ry

 ra
tio

 o
f s

ou
rc

e
da

ta
 p

ac
ke

ts

QRNCDS
LVCDS
LTCDS-I

Fig. 5. Decoding performance with 80.fp =

Next, we conduct experiments to compare the performance of M-RLC proposed in
Preference [17] with QRNCDS in our paper.

244 Jun Wang et al.: A Novel Redundant Data Storage Algorithm Based on Minimum Spanning Tree
and Quasi-randomized Matrix

200 300 400 500 600 700 800 900 1000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Network Size N

D
ec

od
in

g
P

ro
ba

bi
lit

y

M-RLC
QRNCDS

Fig. 6. Decoding probability versus network size

Fig. 6 shows the decoding probability of the data collector as a function of the network

size. We can see that our approach almost achieve 100% decoding probability with
increasing network size, which is greater than M-RLC [17]. The reason is that QRNCDS
adopts the joint decoding algorithm of Gaussian elimination and belief propagation
algorithm to improve the probability and efficiency of data decoding.

2) Average Network Fault Tolerance
We test the average number of nodes that are allowed to fail simultaneously when

decoding ratio can reach 1. The numerical results are shown in Table 4. We can find that
QRNCDS and LVCDS have the same average network fault tolerance, its value is
approximately n-k-10, which is more than twice the value achieved by LTCDS-I. With the
increase of the number of sensor nodes, the difference among these three algorithms is
gradually narrowing, but QRNCDS and LVCDS still outperform LTCDS-I in terms of
fault tolerance.

Table 4. THE AVERAGE NETWORK FAULT TOLERANCE of Each ALGORITHM

 QRNCDS(nft

1)

LVCDS(nft2) LTCDS-I(nft

3)
nft1/nft2 nft1/nft3

n=300,k=90 200 200 120 1 1.6667

n=400,k=120 270 270 170 1 1.5882

n=500,k=150 340 340 220 1 1.5455

n=600,k=180 410 410 270 1 1.5185

n=700,k=210 480 480 330 1 1.4545

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 245

n=800,k=240 550 550 410 1 1.3415

n=900,k=270 620 620 510 1 1.2157

6. Conclusion and Future Work
In this paper, we first study the data storage problem of intermittently connected wireless
sensor networks. Then, we analyze the advantages and disadvantages of replicas storage
strategy and coding strategy. Considering that existing storage solutions based on network
coding have problems of slow traversal and low decoding efficiency, we optimize LT
code-based and randomized redundant storage algorithm and design an energy-efficient
distributed data storage algorithm QRNCDS which is based on minimum spanning tree and
quasi-randomized matrix. Compared with other algorithms, QRNCDS realizes full
network coverage of source data packets in linear time, which greatly saves
communication costs, and simplifies data encoding and storage process by use of
quasi-random network coding and joint decoding method (Source nodes don’t need to
calculate degree and only stores their own sensory data). QRNCDS can also improve the
decoding efficiency of source data packets. The experimental results show that QRNCDS
can greatly improve the recovery efficiency of source packets in the case of rapid traversal
of the whole network. It is also strongly applicable to wireless sensor networks deployed in
harsh environments. However, there are also some shortcomings in this algorithm.
QRNCDS is based on high-powered central coordinator to calculate the network’s
minimum spanning tree and every sensor node needs to know its location information in
advance. In the future research, we may consider how to utilize cooperative
communication mechanism among neighboring nodes to realize reliable and efficient data
storage. Recently more and more machine learning algorithms such as SVM have been
applied to the research of wireless sensor networks, but there are some limitations in
traditional SVM algorithm, we are very happy to see there are a lot of innovations to
improve traditional SVM and machine learning approaches [18-21]. Machine learning
approach can be applied to our work in our future research.

References
[1] Ren Fengyuan, Huang Hai and Lin Chuang, “Wireless sensor networks(In Chinese),” Journal

of Software, vol. 14, no. 7, pp. 1282-1291, 2003. Article (CrossRef Link).
[2] Akyildiz I F, Su W, Sankarasubramaniam Y, et al, “Wireless sensor networks: a survey,”

Computer networks, vol. 38, no. 4, pp. 393-422, 2002. Article (CrossRef Link).
[3] Liu Kunpeng, Jiang Weidong, “The research of underwater sensor node coverage model based

on perception factor (In Chinese),” Journal of Nanjing University (natural sciences), vol. 51,
no. 6, pp. 1203-1209, 2015. Article (CrossRef Link).

[4] Huang Renjie, Song Wen-Zhan, Xu Mingsen, et al, “Real-world sensor network for long-term
volcano monitoring: design and findings,” IEEE Transactions on Parallel and Distributed
Systems, vol. 23, no. 2, pp. 321-329, 2012. Article (CrossRef Link).

http://dx.chinadoi.cn/10.13328/j.cnki.jos.2003.07.013
https://doi.org/10.1016/s1389-1286(01)00302-4
http://dx.chinadoi.cn/10.13232/j.cnki.jnju.2015.06.016
https://doi.org/10.1109/tpds.2011.170

246 Jun Wang et al.: A Novel Redundant Data Storage Algorithm Based on Minimum Spanning Tree
and Quasi-randomized Matrix

[5] Tan Xin, Sun Zhi, Akyildiz I F, “Wireless underground sensor networks: MI-based
communication systems for underground applications,” IEEE Antennas and Propagation
Magazine, vol. 57, no. 4, pp. 74-87, 2015. Article (CrossRef Link).

[6] Cobos M, Perez-Solano J J, Felici-Castell S, et al, “Cumulative-sum-based localization of
sound events in low-cost wireless acoustic sensor networks,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 22, no. 12, pp. 1792-1802, 2014.
Article (CrossRef Link).

[7] Liu Peng, Zhang Song, Qiu Jian, et al, “A redistribution method to conserve data in isolated
energy-harvesting sensor networks,” Computer Science and Information Systems, vol. 8, no. 4,
pp. 1009-1025, 2011. Article (CrossRef Link).

[8] Shen Chao, “A study of distributed fountain codes based data collection techniques in wireless
sensor networks (In Chinese),” Master’s diss. Hangzhou:HangzhouDianzi University, 2011.
Article (CrossRef Link).

[9] XueXinyu, Hou Xiang, Bagai Rajiv, “Data preservation in intermittently connected sensor
networks with data priority,” in Proc. of 10th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks, pp.122-130, 2013.
Article (CrossRef Link).

[10] Shen Yulong, Xi Ning, Pei Qingqi, et al, “Distributed storage schemes for controlling data
availability in wireless sensor networks,” in Proc. of 7th International Conference on
Computational Intelligence and Security, pp.545-549, 2011. Article (CrossRef Link).

[11] Tang Bin, JaggiNeeraj, Takahashi Masaaki, “Achieving Data K-Availability in Intermittently
Connected Sensor Networks,” in Proc. of 23rd International Conference on Computer
Communication and Networks, pp.1-8, 2014. Article (CrossRef Link).

[12] Lin Yunfeng, Liang Ben, Li baochun, “Data Persistence in large-scale sensor networks with
decentralized fountain codes,” in Proc. of 26th IEEE International Conference on Computer
Communications, pp.1658-1666, 2007. Article (CrossRef Link).

[13] Zhang Wei, Zhang Qinchao, Xu Xianghua, Wan Jian, “An optimized degree strategy for
persistent sensor network data distribution,” in Proc. of 20th Euromicro International
Conference on Parallel, Distributed and Network-based Processing, pp.130-137, 2012.
 Article (CrossRef Link).

[14] Aly S A, Kong Z N, Soljanin E, “Fountain codes based distributed storage algorithm for
large-scale wireless sensor networks,” in Proc. of International Conference on Information
Processing in Sensor Networks, pp.171-182, 2008. Article (CrossRef Link).

[15] XiaoYilong, “Random data redundancy method and it application in distributed storage
systems (In Chinese),” PhD diss. Chengdu: School of Computer Science and Engineering,
2013.

[16] Camila H. S. Oliveira, Yacine Ghamri-Doudane, Carlos E. F. Brito, et al, “Optimal network
coding-based in-network data storage and data retrieval for IoT/WSNs,” in Proc. of 14th IEEE
International Symposium on Network Computing and Applications, pp.208-215, 2015.
Article (CrossRef Link).

[17] Cheng Zhan, Fuyuan Xiao, “Coding-based storage design for continuous data collection in
wireless sensor networks,” in Proc. of Journal of Communications and Networks, pp.493-501,
2016. Article (CrossRef Link).

[18] Bin Gu, Victor S. Sheng, Shuo Li, “Bi-parameter space partition for cost-sensitive SVM,” in
Proc. of 24th International Joint Conference on Artificial Intelligence (IJCAI 2015),
pp.3532-3539, 2015. Article (CrossRef Link).

https://doi.org/10.1109/map.2015.2453917
https://doi.org/10.1109/taslp.2014.2351132
https://doi.org/10.2298/csis110420066l
http://dx.doi.org/10.7666/d.y1871233
https://doi.org/10.1109/sahcn.2013.6644970
https://doi.org/10.1109/cis.2011.126
https://doi.org/10.1109/icccn.2014.6911795
https://doi.org/10.1109/infcom.2007.194
https://doi.org/10.1109/pdp.2012.75
https://doi.org/10.1109/ipsn.2008.64
https://doi.org/10.1109/nca.2015.22
https://doi.org/10.1109/chinacom.2015.7497983
https://doi.org/10.1109/tpami.2016.2578326

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 247

[19] Bin Gu, Xingming Sun, Victor S. Sheng, “Structural minimax probability machine,” in Proc. of
IEEE Transactions on Neural Networks and Learning Systems, pp.1-11, 2016.
Article (CrossRef Link).

[20] Zhihua Xia, Xinhui Wang, Xingming Sun, et al, “Steganalysis of least significant bit matching
using multi-order differences,” in Proc. of Security and Communication Networks,
pp.1283-1291, 2014. Article (CrossRef Link).

[21] Zhihua Xia, Xinhui Wang, Xingming Sun, et al, “Steganalysis of LSB matching using
differences between nonadjacent pixels,” in Proc. of Multimed Tools Appl, pp.1947-1962,
2016. Article (CrossRef Link).

Jun Wang received her B.E. and M.E. degrees in electronics engineering from
Nanjing Institute of Communication Engineering, P.R.China, in 1998 and 2001,
respectively. He received his Ph.D. degree from the Nanjing University, China
in 2012. She is currently working as an associate professor of Nanjing
University of Posts and Telecommunications. Her research interests include
wireless sensor networks, wireless communications, broad band networking,
network protocol and network security.

Qiong Yi received her Master’s degree from Nanjing University of Posts and
Telecommunications, Nanjing, China, in 2016, in Department of
Communication and Information Engineering. Her research interests include
wireless sensor networks, data storage, network coding.

Yunfei Chen received his B.E. and M.E. degrees in electronics engineering
from Shanghai Jiaotong University, Shanghai, P.R.China, in 1998 and 2001,
respectively. He received his Ph.D. degree from the University of Alberta in
2006. He is currently working as an Associate Professor at the University of
Warwick, U.K. His research interests include wireless communications,
cognitive radios, wireless relaying and energy harvesting.

Yue Wang is currently pursuing Master’s degree from Nanjing University of
Posts and Telecommunications, Nanjing, China, in Department of
Communication and Information Engineering. Her research interests include
wireless sensor networks, data storage, network coding and cloud computing.

https://doi.org/10.1109/tnnls.2016.2544779
https://doi.org/10.1002/sec.864
https://doi.org/10.1007/s11042-014-2381-8

