• Title/Summary/Keyword: Chemistry II Textbooks

Search Result 44, Processing Time 0.022 seconds

Improved Experiment of the Learning Contents of 'Chemical Reaction Rate' Unit: Reaction of Dilute Hydrochloric Acid and Magnesium Ribbons ('반응 속도' 단원의 학습 내용에 적합한 탐구 실험의 제안 : 묽은 염산과 마그네슘 리본의 반응을 중심으로)

  • Nam, Mi-Ja;Yoon, Hee-Sook;Jeong, Dae-Hong;Chae, Hee K.
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.1
    • /
    • pp.51-61
    • /
    • 2009
  • The purposes of this study are to analyze the learning contents on the measurement of reaction rate which is introduced in the high school ‘science’ and ‘chemistry II’ textbooks, and to revise the experiment appropriate to the learning contents. We examined 11 kinds of ‘science’ textbooks, 8 kinds of ‘chemistry II’ textbooks and 11 kinds of teacher’s manuals used in Korea and additionally surveyed teachers’ opinions on this subject. Most of textbook and teacher’s manuals described that ‘the reaction rate generally decreases through the time’, teachers’ conception also agreed with it. But most of experimental activities in the textbooks were inadequate to explain the concept that the reaction rate generally decreases with time. We analyzed the reasons and revised the experimental condition to solve this disagreement between the description in textbooks and an experimental result. Then we compared improved experimental result and theoretical prediction data. The improved experiment in this study is expected to help to describe the conception of chemical reaction rate in the textbook more clearly.

Analysis of Types of Explanation on Osmosis Concept in Chemistry and Biology Textbooks (화학과 생물 교과서에서 삼투 개념에 관한 설명 유형 분석)

  • Ko, Young-Hwan;Kang, Dae-Hun;Park, Dong-Joe;Kim, Dong-Uk;Paik, Seoung-Hey
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.4
    • /
    • pp.683-695
    • /
    • 2002
  • In this study, we analyzed types of explanation on osmosis concept that were represented in chemistry and biology textbooks of high school and college. There were 5 types of explanation on osmosis concept. The types of explanation were diffusion of solvent, collision, hydration, equilibrium of concentration and screen of holes. Last two types of explanation were classified into misconceptions. The various types of explanation on osmosis concept might cause to have be a reason that students had many misconceptions and to feel difficult to learn about osmosis concept. Many of textbooks is accord to types of concept explanation and figure explanation on osmosis but some is not.

A Survey of Inquiry Contexts and Terms about Inquiry Area of Material Science in Secondary School -For the Middle School Science and Chemistry I and II Textbooks- (중등과학 물질 분야 탐구영역의 탐구 상황 및 탐구 용어에 대한 조사 . 연구 -중학 과학과 화학 I . II 교과서에 대하여-)

Analysis of Textbook Contents and Chemistry Teachers' Cognition about Species of Strong Acid in Water (강산 수용액에서의 화학종에 대한 교과서 내용 및 화학 교사의 인식 분석)

  • Go, Hyung-Suk;Kim, Kyung-Eun;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.5
    • /
    • pp.628-637
    • /
    • 2012
  • In this research, the textbook contents related to the ionization degree of strong acid in water were analyzed from 1945 year syllabus to chemistry II textbook in 2009 revised curriculum. Fifty chemistry teachers' cognition related to the species of strong acid in water, and the relationship between the degree of ionization was surveyed by a questionnaire and interviews. As results, most of the teachers thought the species of strong acid in water based on the degree of ionization represented on the chemistry II textbooks. They didn't recognize the conflict of the degree of ionization and definition of strong acid on the textbooks, and then they awakened the conflict, they could not solve the problem.

Conception Analysis of Students, Pre-service Teachers and Chemistry Teachers on Boiling Point Elevation (끓는점 오름 현상에 대한 학생, 예비교사, 화학교사의 개념 분석)

  • Yoon, Hee-Sook;Jeong, Dae-Hong
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.7
    • /
    • pp.805-812
    • /
    • 2006
  • In this study the description patterns of chemistry textbooks on the boiling point elevation phenomenon and the understanding patterns of high school students, pre-service teachers and chemistry teachers were investigated. High school chemistry II textbooks developed in the 6th and 7th national curricula were analyzed and the conception patterns of subjects on this phenomenon were categorized using a questionnaire developed for this study. The description patterns of science textbooks were classified into three: 'decreasing of surface solvent molecules', 'attraction force between solvent and solute molecules' and 'decreasing of surface solvent molecules and attraction force between solvent and solute molecules'. In the result of the conception analysis, the ratio of 'attraction force between solvent and solute molecules' was high among students, pre-service teachers, and chemistry teachers. There was a propensity that they would like to explain the boiling point elevation in terms of enthalpy rather than entropy, and in order to analyze this propensity, follow-up interviews were carried out.

An Analysis of Conceptual Difficulties in Electrolysis of High School Students, In-service Chemistry Teachers, and Chemistry Teachers (전기분해 관련 개념에 대한 고등학생, 예비 교사, 화학 교사들의 어려움에 대한 분석)

  • Park, Jin-Hee;Paik, Seoung-Hey;Kim, Dong-Uk
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.6
    • /
    • pp.660-670
    • /
    • 2003
  • This study examined the conceptions of high school students, In-service chemistry teachers, and chemistry teachers related to the electrolysis phenomena by questionnaires and follow-up interviews. High school chemistry II textbooks were analyzed for finding the cause of the misconceptions of the teachers and students. From the analysis, it was found that many teachers represented to students the reduction-oxidation reaction and the electrodes of electrolysis are opposite to the reaction of a chemical cell without explanation of the principles. It means that students would learn the electrolysis phenomena by rote. But the teachers thought that it was not necessary to explain the principles to students because the students could not understand. Also, some of the teacher had misconceptions in electrolysis of solution taking no account of water electrolysis. They only considered the reduction-oxidation reactions of the ions already were contained in solution. They did not considered the ions generated by the electrolysis. This tendency is similar to In-service chemistry teachers and high school students. Also, this tendency can be found in chemistry II textbooks.

The Effects of Small-Scale Chemistry Laboratoty Programs in High School Chemistry II Class (고등학교 화학II 수업에 적용한 Small-Scale Chemistry 실험의 효과)

  • Hong, Ji-Hye;Park, Jong-Yoon
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.4
    • /
    • pp.318-327
    • /
    • 2007
  • The purpose of this study is to examine the effects of small-scale chemistry(SSC) laboratory activities implemented in high school chemistry II classes on the students' inquiry process skills and science-related attitudes. For this study, 112 students in the 12th grade were chosen and divided into an experimental and a control group. Seven SSC lab programs that can replace the traditional experiments in chemistry II textbooks were selected and administered to the experimental group while the traditional textbook experiments were administered to the control group. The results showed that there was a significant difference in the enhancement of inquiry process skills between the two groups while no significant difference was found in science-related attitudes. Further analysis showed that the difference in the inquiry process skills came from the basic inquiry process skills. The experimental group students thought that the SSC experiments have many advantages compared to the traditional experiments, e.g., individual work, learning lab and theory in parallel, short experiment time, safety, environmental aspects, etc. These results suggest that the SSC lab programs are valuable in high school chemistry classes and developing and distributing various SSC lab programs is needed to replace the traditional experiments in the current textbooks.

Analysis of Scientific Item Networks from Science and Biology Textbooks (고등학교 과학 및 생물교과서 과학용어 네트워크 분석)

  • Park, Byeol-Na;Lee, Yoon-Kyeong;Ku, Ja-Eul;Hong, Young-Soo;Kim, Hak-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.427-435
    • /
    • 2010
  • We extracted core terms by constructing scientific item networks from textbooks, analyzing their structures, and investigating the connected information and their relationships. For this research, we chose three high-school textbooks from different publishers for each three subjects, i.e, Science, Biology I and Biology II, to construct networks by linking scientific items in each sentence, where used items were regarded as nodes. Scientific item networks from all textbooks showed scare-free character. When core networks were established by applying k-core algorithm which is one of generally used methods for removing lesser weighted nodes and links from complex network, they showed the modular structure. Science textbooks formed four main modules of physics, chemistry, biology and earth science, while Biology I and Biology II textbooks revealed core networks composed of more detailed specific items in each field. These findings demonstrate the structural characteristics of networks in textbooks, and suggest core scientific items helpful for students' understanding of concept in Science and Biology.

A Comparative Analysis of Cognitive Levels of 11th Grade Students and Cognitive Levels Required by High School Chemistry I Textbooks (고등학교 2학년 학생들의 인지수준과 화학 I 교과서 내용이 요구하는 인지수준 비교 분석)

  • Kim, Eun-Suk;Park, Kwang-Seo;Oh, Chang-Ho;Kim, Dong-Jin;Park, Kuk-Tae
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.6
    • /
    • pp.645-653
    • /
    • 2004
  • The purpose of this study was to compare and analyze the cognitive levels of 11th grade students and those required in high school chemistry I textbooks standardized by the 7th national education curriculum. For this study, the cognitive development stages of 456 11th grade students were surveyed using short-version GALT (group assessment of logical thinking). Furthermore, 15 basic concepts were extracted from the contents on water and air, 2 units in chemistry I order to analyze the cognitive levels necessary for understanding high school textbooks, using CAT (curriculum analysis taxonomy). The results showed that 52.5% of the surveyed 11th grade students reached the formal operational level, 28.3% transitional levels, and 19.5% concrete operational levels. 68.9% of the academic high school students and 6.6% of the technical high school students reached the formal operational levels, and the ratio of formation was very different in each logics. As a result of the analyzing the cognitive levels needed for understanding chemistry I textbook contents, in spite of a change in national education curriculum, there were no great change in cognitive levels required by scientific concept except some inquiry activities. The cognitive levels in high school chemistry I textbooks by the 7th national education curriculum appeared higher than the cognitive levels of 11th grade student, but cognitive levels of inquiry activities were similar to the cognitive levels of the students. Chemistry teachers thought of chemistry I textbooks by the 7th national education curriculum as desirable because scientific concepts were reduced and a lot of real life materials were adapted. However, they pointed out a problem of difference in contents levels compared with chemistry I textbooks because scientific concepts were greatly reduced in chemistry I textbooks. The cognitive levels required in chemistry I textbooks still appeared higher than those of the students. Consequently, various teaching and learning methods and materials will have to be developed to be suitable for the students' cognitive levels.