• Title/Summary/Keyword: ChemicalPolishing

Search Result 584, Processing Time 0.022 seconds

Respirable Silica Dust Exposure of Migrant Workers Informing Regulatory Intervention in Engineered Stone Fabrication

  • Mahinda Seneviratne;Kiran Shankar;Phillip Cantrell;Aklesh Nand
    • Safety and Health at Work
    • /
    • v.15 no.1
    • /
    • pp.96-101
    • /
    • 2024
  • Background: Silicosis among workers who fabricate engineered stone products in micro or small-sized enterprises (MSEs) was reported from several countries. Workplace exposure data of these workers at high risk of exposure to respirable crystalline silica (RCS) dust are limited. Methods: We surveyed workers performing cutting, shaping and polishing tasks at 6 engineered stone fabricating MSEs in Sydney, Australia prior to regulatory intervention. Personal exposure to airborne RCS dust in 34 workers was measured, work practices were observed using a checklist and worker demography recorded. Results: Personal respirable dust measurements showed exposures above the Australian workplace exposure standard (WES) of 0.1 mg/m3 TWA-8 hours for RCS in 85% of workers who performed dry tasks and amongst 71% using water-fed tools. Dust exposure controls were inadequate with ineffective ventilation and inappropriate respiratory protection. All 34 workers sampled were identified as overseas-born migrants, mostly from three linguistic groups. Conclusions: Workplace exposure data from this survey showed that workers in engineered stone fabricating MSEs were exposed to RCS dust levels which may be associated with a high risk of developing silicosis. The survey findings were useful to inform a comprehensive regulatory intervention program involving diverse hazard communication tools and enforcing improved exposure controls. We conclude that modest occupational hygiene surveys in MSEs, with attention to workers' demographic factors can influence the effectiveness of intervention programs. Occupational health practitioners should address these potential determinants of hazardous exposures in their workplace surveys to prevent illness such as silicosis in vulnerable workers.

Effect of Ta/Cu Film Stack Structures on the Interfacial Adhesion Energy for Advanced Interconnects (미세 배선 적용을 위한 Ta/Cu 적층 구조에 따른 계면접착에너지 평가 및 분석)

  • Son, Kirak;Kim, Sungtae;Kim, Cheol;Kim, Gahui;Joo, Young-Chang;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.39-46
    • /
    • 2021
  • The quantitative measurement of interfacial adhesion energy (Gc) of multilayer thin films for Cu interconnects was investigated using a double cantilever beam (DCB) and 4-point bending (4-PB) test. In the case of a sample with Ta diffusion barrier applied, all Gc values measured by the DCB and 4-PB tests were higher than 5 J/㎡, which is the minimum criterion for Cu/low-k integration without delamination. However, in the case of the Ta/Cu sample, measured Gc value of the DCB test was lower than 5 J/㎡. All Gc values measured by the 4-PB test were higher than those of the DCB test. Measured Gc values increase with increasing phase angle, that is, 4-PB test higher than DCB test due to increasing plastic energy dissipation and roughness-related shielding effects, which matches well interfacial fracture mechanics theory. As a result of the 4-PB test, Ta/Cu and Cu/Ta interfaces measured Gc values were higher than 5 J/㎡, suggesting that Ta is considered to be applicable as a diffusion barrier and a capping layer for Cu interconnects. The 4-PB test method is recommended for quantitative adhesion energy measurement of the Cu interconnect interface because the thermal stress due to the difference in coefficient of thermal expansion and the delamination due to chemical mechanical polishing have a large effect of the mixing mode including shear stress.

Isolation of Functional Fatty Acid in Cosolvent Induced SFE Process (공용매가 첨가된 초임계유체 추출공정에서 기능성 지방산의 추출)

  • Lee, Seung Bum;Park, Kyung Ai;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.438-444
    • /
    • 1999
  • The natural full-fat rice bran is reported to contain 8.4 to 14.7 wt % Lipids, but the amount and composition of bran depend on the type of rice, quality of paddy, pretreatments to paddy such as parboiling, type of milling system employed, and the degree of polishing. These lipids are usually mixtures of several class fatty acids containing palmitic acid, linolenic acid, linoleic acid, oleic acid, stearic acid, tocopherol, squalene, etc. In this study the oil rich essential fatty acid (EFA) including squalene was extracted from the domestic brown rice bran using supercritical fluid extraction (SFE) and cosolvent induced SFE process, respectively. And the extracts were analyzed with GC-MSD. The extracted amount of rice bran oil was dependent upon the operating pressure and temperature, and the fatty acid composition of oil was varied with the reduced density (${\rho}_{\gamma}$) of supercritical carbon dioxide. About 70~80% of rice bran oil was extracted in 4hrs. The cosolvent induced SFE process shortened the total extraction time, extracted greater amount of oil than SFE process. Especially squalene which was not found in solvent extract phase was identified in SFE and cosolvent induced SFE process.

  • PDF

A Comparative study of roughness of enamel surface to various interdental enamel stripping methods in vitro (치간 법랑질 삭제방법에 따른 치아표면 거칠기에 관한 비교연구)

  • Row, Joon;Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.29 no.4 s.75
    • /
    • pp.483-490
    • /
    • 1999
  • Interdental enamel stripping is an usual method for correction of abnormal tooth shape and tooth size discrepancy which is one of the etiologic factors of malocclusion. Clinically it Is useful to correct the minor crowding in anterior teeth and posterior occlusion during finishing stage of orthodontic treatment. But this procedure has risks such as irreversible tooth reduction and remaining roughness of enamel surface can accumulate plaque which can evoke periodontal problem. Even if various methods were introduced to minimize the enamel surface roughness, their evaluation was limited in morphologic differences by scanning electronic microscope(SEM). The purpose of this study was to compare the various interdental enamel stripping method by SEM and to quantify the difference of surface roughness by use of Surfcorder SEF-30D(Kosaka Lab. Ltd.) which can measure the roughness of surface. The stripping methods were divided into mechanical and mechanical-chemical method. Air-rotor stripping and separating strip were used for mechanical stripping and $37\%$ phosphoric acid was used for chemical stripping. The enamel surface roughness after mechanical or mechanical-chemical stripping of interproximal surfaces of premolars which were extracted for orthodontic purpose were measured and compared by means of SEM and $Surfcorder^{\circledR}$, the results were as follows. 1. Enamel surface of primary treated by coarse diamond bur and separating strip groups showed highest value of roughness. 2. To compare the primary treated groups between mechanical and mechanical-chemical method, the latter group showed lower value of roughness remarkably. 3. Mechanical stripping groups which were treated both coarse and fine instrument showed lower value of roughness as much as non treated group. 4. The use of Pumice for final polishing did not show significantly smoothening the stripped enamel surface any more.

  • PDF

Experimental Study for Removing Lacquer Layer on Iron Surface by Nd:YAG Laser System (Nd:YAG 레이저를 이용한 철제 표면 옻칠 제거 실험 연구)

  • Park, Chang Su;Cho, Nam Chul;Hwang, Hyun Sung
    • Journal of Conservation Science
    • /
    • v.32 no.3
    • /
    • pp.377-384
    • /
    • 2016
  • There are physical and chemical method for removement of a lacquered layer existing on the surface when gilding an iron Buddha, these caused environmental pollution by surface degradation and is very noxious for conservation scientist's health. Thus, on this study, we conducted a lacquered layer removement experiments using Nd:YAG Laser which is contactless and eco-friendly. Specimens were made by polishing $5{\times}5$ size of iron(99.9%) specimens surfaces evenly and by differing of number of coating of unrefined lacquer, so there were thickness differences of $10{\mu}m$, $20{\mu}m$, and $30{\mu}m$. The laser machine used in this study was Nd:YAG Laser, and we used two wavelength modes; 1064 nm(160~180 mJ) for infrared light region and 532 nm(50~350 mJ) for ultraviolet light region. The experiment done by investigating the transition of specimens' surfaces with laser wavelength, energy, and numbers of investigation. The remain amount of lacquered layer surfaces before/after laser irradiation was investigated by stereoscopic microscope, observation by SEM, Non-contact Surface Roughness Measurement Device, and FT-IR etc. As a result of each analysis, we could verify the thickness of $10{\mu}m$, $20{\mu}m$ of lacquered layer removed without surface degradation when using 1064 nm wavelength with $1.0J/cm^2$ density. We could find out that Nd:YAG Laser is effective for removing remained lacquered layers when gilding an iron Buddha. In the future, when not only the metal has made various studies also wood lacquered furniture or the like, it seems to be utilized to remove the lacquer without surface damage.

Wet Etching Characteristics of Cu Surface for Cu-Cu Pattern Direct Bonds (Cu-Cu 패턴 직접접합을 위한 습식 용액에 따른 Cu 표면 식각 특성 평가)

  • Park, Jong-Myeong;Kim, Yeong-Rae;Kim, Sung-Dong;Kim, Jae-Won;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • Three-dimensional integrated circuit(3D IC) technology has become increasingly important due to the demand for high system performance and functionality. In this work, BOE and HF wet etching of Cu line surfaces after CMP were conducted for Cu-Cu pattern direct bonding. Step height of Cu and $SiO_2$ as well as Cu dishing after Cu CMP were analyzed by the 3D-Profiler. Step height increased and Cu dishing decreased with increasing BOE and HF wet etching times. XPS analysis of Cu surface revealed that Cu surface oxide layer was partially removed by BOE and HF wet etching treatment. BOE treatment showed not only the effective $SiO_2$ etching but also reduced dishing and Cu surface oxide rather than HF treatment, which can be used as an meaningful process data for reliable Cu-Cu pattern bonding characteristics.

Effects of DC Biases and Post-CMP Cleaning Solution Concentrations on the Cu Film Corrosion

  • Lee, Yong-K.;Lee, Kang-Soo
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.276-280
    • /
    • 2010
  • Copper(Cu) as an interconnecting metal layer can replace aluminum (Al) in IC fabrication since Cu has low electrical resistivity, showing high immunity to electromigration compared to Al. However, it is very difficult for copper to be patterned by the dry etching processes. The chemical mechanical polishing (CMP) process has been introduced and widely used as the mainstream patterning technique for Cu in the fabrication of deep submicron integrated circuits in light of its capability to reduce surface roughness. But this process leaves a large amount of residues on the wafer surface, which must be removed by the post-CMP cleaning processes. Copper corrosion is one of the critical issues for the copper metallization process. Thus, in order to understand the copper corrosion problems in post-CMP cleaning solutions and study the effects of DC biases and post-CMP cleaning solution concentrations on the Cu film, a constant voltage was supplied at various concentrations, and then the output currents were measured and recorded with time. Most of the cases, the current was steadily decreased (i.e. resistance was increased by the oxidation). In the lowest concentration case only, the current was steadily increased with the scarce fluctuations. The higher the constant supplied DC voltage values, the higher the initial output current and the saturated current values. However the time to be taken for it to be saturated was almost the same for all the DC supplied voltage values. It was indicated that the oxide formation was not dependent on the supplied voltage values and 1 V was more than enough to form the oxide. With applied voltages lower than 3 V combined with any concentration, the perforation through the oxide film rarely took place due to the insufficient driving force (voltage) and the copper oxidation ceased. However, with the voltage higher than 3 V, the copper ions were started to diffuse out through the oxide film and thus made pores to be formed on the oxide surface, causing the current to increase and a part of the exposed copper film inside the pores gets back to be oxidized and the rest of it was remained without any further oxidation, causing the current back to decrease a little bit. With increasing the applied DC bias value, the shorter time to be taken for copper ions to be diffused out through the copper oxide film. From the discussions above, it could be concluded that the oxide film was formed and grown by the copper ion diffusion first and then the reaction with any oxidant in the post-CMP cleaning solution.

Effect of Size and Morphology of Silica Abrasives on Oxide Removal Rate for Chemical Mechanical Polishing (기계화학적 연마용 실리카 연마재의 형상과 크기가 산화막 연마율에 미치는 영향)

  • Lee, Jinho;Lim, Hyung Mi;Huh, Su-Hyun;Jeong, Jeong-Hwan;Kim, Dae Sung;Lee, Seung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.631-635
    • /
    • 2011
  • Spherical and non-spherical silica particles prepared by the direct oxidation were studied for the effect of the particle size and shape of these particles on oxide CMP removal rate. Spherical silica particles, which have 10~100 nm in size, were prepared by the direct oxidation process from silicon in the presence of alkali catalyst. The 10 nm silica particles were aggregated by addition of an acid, an alcohol, or a silane as an aggregation inducer between the particles. Two or more aggregated silica particles were used as a seed to grow non spherical silica particles in the direct oxidation process of silicon in the presence of alkali catalyst. The oxide removal rate of spherical silica particles increased with increasing an average particle size for spherical silica abrasives in the oxide CMP. It further increased non-spherical particles, compared with the spherical particles in the similar average particle size.

Electrochemical Characterization of Anti-Corrosion Film Coated Metal Conditioner Surfaces for Tungsten CMP Applications (텅스텐 화학적-기계적 연마 공정에서 부식방지막이 증착된 금속 컨디셔너 표면의 전기화학적 특성평가)

  • Cho, Byoung-Jun;Kwon, Tae-Young;Kim, Hyuk-Min;Venkatesh, Prasanna;Park, Moon-Seok;Park, Jin-Goo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.61-66
    • /
    • 2012
  • Chemical Mechanical Planarization (CMP) is a polishing process used in the microelectronic fabrication industries to achieve a globally planar wafer surface for the manufacturing of integrated circuits. Pad conditioning plays an important role in the CMP process to maintain a material removal rate (MRR) and its uniformity. For metal CMP process, highly acidic slurry containing strong oxidizer is being used. It would affect the conditioner surface which normally made of metal such as Nickel and its alloy. If conditioner surface is corroded, diamonds on the conditioner surface would be fallen out from the surface. Because of this phenomenon, not only life time of conditioners is decreased, but also more scratches are generated. To protect the conditioners from corrosion, thin organic film deposition on the metal surface is suggested without requiring current conditioner manufacturing process. To prepare the anti-corrosion film on metal conditioner surface, vapor SAM (self-assembled monolayer) and FC (Fluorocarbon) -CVD (SRN-504, Sorona, Korea) films were prepared on both nickel and nickel alloy surfaces. Vapor SAM method was used for SAM deposition using both Dodecanethiol (DT) and Perfluoroctyltrichloro silane (FOTS). FC films were prepared in different thickness of 10 nm, 50 nm and 100 nm on conditioner surfaces. Electrochemical analysis such as potentiodynamic polarization and impedance, and contact angle measurements were carried out to evaluate the coating characteristics. Impedance data was analyzed by an electrical equivalent circuit model. The observed contact angle is higher than 90o after thin film deposition, which confirms that the coatings deposited on the surfaces are densely packed. The results of potentiodynamic polarization and the impedance show that modified surfaces have better performance than bare metal surfaces which could be applied to increase the life time and reliability of conditioner during W CMP.

Operation Parameters for the Effective Treatment of Steel Wastewater by Rare Earth Oxide and Calcium Hydroxide (효율적 제철폐수의 처리를 위한 희토류 화합물과 칼슘화합물의 운전인자 연구)

  • Lee, Chang-Yong;Lee, Sang-Min;Kim, Wan-Joo;Choi, Ko-Yeol
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.483-489
    • /
    • 2006
  • The behavior of rare earth compounds such as $La_{2}O_{3}$, $CeO_{2}$, and $Ca(OH)_{2}$ on the removal of fluoride and heavy metals in the steel wastewater has been investigated. The removal mechanism of fluoride by rare earth elements has been known to be the formation of insoluble compounds between $F^{-}$ and cations such as $La^{3+}$ and $Ce^{4+}$ produced by the dissociation of rare earth compounds (To reduce the running cost of the fluoride wastewater treatment facility, their fluoride removal efficiencies were compared with those of inexpensive rare earth minerals such as natural lanthanide and cerium compound used as a glass polishing agent). All of the rare earth oxides used in this study showed a higher removal efficiency of fluoride than $Ca(OH)_{2}$ in the wastewater. In the case of artificial HF solution, the removal efficiency of fluoride showed in the order: $CeO_{2}$-mineral < $CeO_{2}$ < $Ca(OH)_{2}$ < $La_{2}O_{3}$-mineral < $La_{2}O_{3}$. However, the removal efficiency of fluoride in the wastewater increased in the following order: $Ca(OH)_{2}$ < $CeO_{2}$ mineral < $CeO_{2}$ < $La_{2}O_{3}$ mineral < $La_{2}O_{3}$. All agents showed high efficiencies for the removal of Mn and total Cr in the rare earth compounds. In the case of $Ca(OH)_{2}$, fluoride removal decreased with increasing pH while. However, the rare earth compounds showed a higher fluoride removal in higher pH condition, the optimum pH condition seemed to be around 7 considering both water quality and fluoride removal. Under the pH 7 condition, the $Ca(OH)_{2}$ was superior to rare earth compounds in Mn removal and the lanthanide was superior to others in total Cr removal.