• 제목/요약/키워드: Chemical vapor infiltration

검색결과 38건 처리시간 0.028초

C/SiC 복합재료 제조시 Pulse-CVI에서 증착변수의 영향 연구 (Studies on Effects of Deposition Parameters in Manufacturing of C/Sic composites by Pulse-CVI)

  • 김용탁;김영준;정귀영
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.141-143
    • /
    • 2001
  • Ceramic fiber-reinforced composites have good mechanical properties in hardness and durability. In this study, we studied the formation of SiC/C composites from methyltrichlorosilane and hydrogen by the Pulse-chemical vapor infiltration(PCVI) to deposit silicon carbide around the changes of the amount of deposit. SiC/C composites formed at $950^{\circ}C$, 20torr, Pulse-times (5s/60s). SEM of the cross sectional area of semple showed deposited silicon carbide around fibers.

  • PDF

Nicalon 섬유강화 SiC 복합재료에서 섬유 Coating층의 두께가 기계적 성질에 미치는 영향 (Effect of Interlayer Thickness on Mechanical Properties of Nicalon-Fiber-Reinfored SiC Composites)

  • 김민수;김영욱;이준근;정덕수
    • 한국세라믹학회지
    • /
    • 제30권7호
    • /
    • pp.549-556
    • /
    • 1993
  • Interfacial shear strength plays an important role in determining the mechanical properties of a fiber-reinforced ceramic composites. In this study, the effect ofinterlayer thickness on mechanical properties of Nicalon-fiber-reinforced SiC composites fabricated via polymer solution infiltration/chemical vapor infiltration (PSI/CVI) was studied. It was found that the flexural strength and fracture toughness of the composites were increased with the interlayer thickness and showed maximum value at the interlayer thickness of 0.66${\mu}{\textrm}{m}$. Typical flexural strength and fracture toughness of Nicalon-fiber-reinforced SiC composites with interlayer thickness of 0.66${\mu}{\textrm}{m}$ were 391.7$\pm$34.6MPa and 15.1$\pm$1.8MPa.m1/2, respectively.

  • PDF

A Study on the Ultrasonic Nondestructive Evaluation of Carbon/Carbon Composite Disks

  • Im, Kwang-Hee;Jeong, Hyun-Jo;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.320-330
    • /
    • 2000
  • It is desirable to perform nondestructive evaluation (NDE) to assess material properties and part homogeneity because the manufacturing of carbon/carbon brake disks requires complicated and costly processes. In this work several ultrasonic techniques were applied to carbon/carbon brake disks (322mm ad, 135mm id) for the evaluation of spatial variations in material properties that are attributable to the manufacturing process. In a large carbon/carbon disk manufactured by chemical vapor infiltration (CYI) method, the spatial variation of ultrasonic velocity was measured and found to be consistent with the densification behavior in CYI process. Low frequency (e.g., 1-5MHz) through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. Images based on both the amplitude and the time-of-flight of the transmitted ultrasonic pulse showed significant variation in the radial direction. The radial variations in ultrasonic velocity and attenuation were attributed to a density variation caused by the more efficient densification of pitch impregnation near the id and od and by the less efficient densification away from the exposed edged of the disk. Ultrasonic velocities in the edges of the disk. Ultrasonic velocities in the thickness direction were also measured as a function of location using dry-coupling transducers ; the results were consistent with the densification behavior. However, velocities in the in-plane directions (circumferential and radial) seemed to be affected more by the relative contents of fabric and chopped fiber, and less by the void content.

  • PDF

The Effect of Chemical Vapor Infiltrated SiC Whiskers on the Change in the Pore Structure of a Porous SiC Body

  • Joo, Byoung-In;Park, Won-Soon;Choi, Doo-Jin;Kim, Hai-Doo
    • 한국세라믹학회지
    • /
    • 제43권4호
    • /
    • pp.199-202
    • /
    • 2006
  • In this study, SiC whiskers were grown on a porous SiC diesel particulate filter for nanoparticle filtering. To grow the whiskers at the inner pore without closing the pores, we used chemical vapor infiltration with a solution source and a dilute. As the deposition time increased, the whiskers grew and formed a network structure. After 180 min of deposition, the mean diameter of the whiskers was 174 nm and the compressive strength was 58.4 MPa. The pores shrank from $10{\mu}m\;to\;0.4{\mu}m$ and, because the whiskers filed the inner pores, the gradient of permeability decreased as the deposition time increased. However, by using the network structure of whiskers deposited for 120 min and 180 min, we obtained a diesel particulate filter with pores of $0.98{\mu}m\;and\;0.4{\mu}m$, respectively. Furthermore, the filter shows better permeability than a porous body with pores of $1{\mu}m$. In short, by filtering the nanoparticulate materials, the network structure of whiskers improves the strength, reduces the pore size and minimizes the permeability drop.

Effect of SiC Nanorods on Mechanical and Thermal Properties of SiC Composites Fabricated by Chemical Vapor Infiltration

  • Lee, Ho Wook;Kim, Daejong;Lee, Hyeon-Geun;Kim, Weon-Ju;Yoon, Soon Gil;Park, Ji Yeon
    • 한국세라믹학회지
    • /
    • 제56권5호
    • /
    • pp.453-460
    • /
    • 2019
  • To reduce residual pores of composites and obtain a dense matrix, SiCf/SiC composites were fabricated by chemical vapor deposition (CVI) using SiC nanorods. SiC nanorods were uniformly grown in the thickness direction of the composite preform when the reaction pressure was maintained at 50 torr or 100 torr at 1,100℃. When SiC nanorods were grown, the densities of the composites were 2.57 ~ 2.65 g/㎤, higher than that of the composite density of 2.47 g/㎤ for non-growing of SiC nanorods under the same conditions; grown nanorods had uniform microstructure with reduced large pores between bundles. The flexural strength, fracture toughness and thermal conductivity (room temperature) of the SiC nanorod grown composites were 412 ~ 432 MPa, 13.79 ~ 14.94 MPa·m1/2 and 11.51 ~11.89 W/m·K, which were increases of 30%, 25%, and 25% compared to the untreated composite, respectively.

유동층반응기에서 화학증기침투에 의한 C/SiC의 복합체 제조시 변수의 영향 연구 (Studies on the Effects of Variables on the Fabrication Of C/SiC Composite by Chemical Vapor Infiltration in a Fluidized Bed Reactor)

  • 이성주;김영준;김미현;임병오;정귀영
    • 공업화학
    • /
    • 제10권6호
    • /
    • pp.843-847
    • /
    • 1999
  • 본 연구에서는 유동층-화학증기침투에 의해 이염화이메틸규소(DDS)와 수소로부터 생성된 탄화규소를 활성탄에 증착시킨 세라믹 탄소/탄화규소복합체가 제조되었다. 4~12, 12~20, 20~40 mesh의 활성탄이 사용되었다. 증착 후 반응물인 이염화이메틸규소의 농도, 활성탄의 크기, 반응압력, 반응시간에 따른 반응후 각 시료의 표면적과 증착량 및 증착양상을 관찰하였다. 실험결과 DDS의 농도가 낮고 반응압력이 작을수록 시료 기공내에 고른 증착을 갖는 것을 알 수 있었다. 또한 기공직경과 표면적들이 어떠한 시점에서 최소값을 갖는 것으로 기공내부 증착에서 입자외부 표면 증착으로 바뀜을 알 수 있었다. DDS의 농도가 낮고 반응압력이 낮을 때 작은 탄화규소입자가 활성탄 표면에 더욱 고르게 증착되었다. 이 결과들은 SEM, TGA, 기공도측정장치, BET에 의해 확인되었다.

  • PDF

화학적 기상 반응법에 의한 탄화규소 피복 흑연의 제조(II) (Fabrication of SiC Converted Graphite by Chemical Vapor Reaction Method(II))

  • 윤영훈;최성철
    • 한국세라믹학회지
    • /
    • 제36권1호
    • /
    • pp.21-29
    • /
    • 1999
  • 흑연 기판에 탄화규소 전환층을 형성하는데 있어서 기판의 밀도와 기공 크기 분포의 영향이 조사되었다. 전환층형성을 위한 화학 반응은 기판의 표면 또는 표면 하부에서 SiO 기체의 침투를 통해 이루어졌다. 전환 공정 동안 기판 표면에서의 충분한 양의 SiO 기체 침투 및 연속적인 화학반응에 요구되는 기공크기 분포는 1.0~10.0$\mu\textrm{m}$ 범위인 것으로 추정되엇다. 유한요소법에 의한 탄화규소 층의 응력 해석에서는 열적 불일치에 기인하는 잔류응력 분포를 나타냈다. 그러나. X-선 회절에 의해 탄화규소 층에서는 압축응력이 측정되었으며, 탄화규소 층에서의 잔류응력 분포에 대해 SiC 층과 흑연 기판간의 interlayer의 constraining 효과, 전환층의 치밀화 거동 및 입자성장에 의해 주로 영향받는 것으로 추정되었다.

  • PDF

Synthesis of Mesostructured Conducting Polymer-Carbon Nanocomposites and Their Electrochemical Performance

  • Choi, Moon-Jung;Lim, Byung-Kwon;Jang, Jyong-Sik
    • Macromolecular Research
    • /
    • 제16권3호
    • /
    • pp.200-203
    • /
    • 2008
  • A conducting polymer layer was introduced into the pore surface of mesoporous carbon via vapor infiltration of a monomer and subsequent chemical oxidative polymerization. The polypyrrole, conducting polymer has attracted considerable attention due to the high electrical conductivity and stability under ambient conditions. The mesoporous carbon-polypyrrole nanocomposite exhibited the retained porous structure, such as mesoporous carbon with a three-dimensionally connected pore system after intercalation of the polypyrrole layer. In addition, the controllable addition of pyrrole monomer can provide the mesoporous carbon-polypyrrole nanocomposites with a tunable amount of polypyrrole and texture property. The polypyrrole layer improved the electrode performance in the electrochemical double layer capacitor. This improved electrochemical performance was attributed to the high surface area, open pore system with three-dimensionally interconnected mesopores, and reversible redox behavior of the conducting polypyrrole. Furthermore, the correlation between the amount of polypyrrole and capacitance was investigated to check the effect of the polypyrrole layer on the electrochemical performance.

Cf/C-Cu- New Sliding Electrical Contact Materials

  • Ran, Liping;Yi, Maozhong;Peng, Ke;Yang, Lin;Ge, Yicheng
    • Carbon letters
    • /
    • 제10권2호
    • /
    • pp.94-96
    • /
    • 2009
  • [ $C_f/C-Cu$ ]composites were fabricated by infiltrating molten Cu into different $C_f/C$ preforms prepared by chemical vapor infiltration, resin impregnation and carbonization. The microstructure and properties of the composites were investigated. The results show that Cu in the composites filled the pores and showed network-like distribution. Compared with homemade J204 brush material and certain grade pantograph slider from abroad, the composites have higher flexural strength and better electrical conductivity. The friction and wear properties of the composites are better than that of J204, and closed to that of the abroad material.

Distribution of Deposited Carbon in Carbon Brake Disc Made by Pressure-Gradient Chemical Vapor Infiltration

  • Chen, Jianxun;Xiong, Xiang
    • Carbon letters
    • /
    • 제8권1호
    • /
    • pp.25-29
    • /
    • 2007
  • The carbon brake discs were manufactured by densification the carbon fiber preform using PG-CVI technology with Propene as a carbon precursor gas and Nitrogen as a carrier gas. The densities of carbon brake discs were tested at different densification time. The results indicate that the densification rate is more rapid before 100 hrs than after 200 hrs. The CTscanning image and the SEM technology were used to observe the inner subtle structure. CT-images show the density distribution in the carbon brake disc clearly. The carbon brake disk made by PG-CVI is not very uniform. There is a density gradient in the bulk. The high-density part in the carbon brake is really located in the friction surface, especially in the part of inner circle. This density distribution is most suitable for the stator disc.