Synthesis of Mesostructured Conducting Polymer-Carbon Nanocomposites and Their Electrochemical Performance

  • Choi, Moon-Jung (Hyperstructured Organic Materials Research Center and School of Chemical and Biological Engineering, Seoul National University) ;
  • Lim, Byung-Kwon (Hyperstructured Organic Materials Research Center and School of Chemical and Biological Engineering, Seoul National University) ;
  • Jang, Jyong-Sik (Hyperstructured Organic Materials Research Center and School of Chemical and Biological Engineering, Seoul National University)
  • Published : 2008.04.30

Abstract

A conducting polymer layer was introduced into the pore surface of mesoporous carbon via vapor infiltration of a monomer and subsequent chemical oxidative polymerization. The polypyrrole, conducting polymer has attracted considerable attention due to the high electrical conductivity and stability under ambient conditions. The mesoporous carbon-polypyrrole nanocomposite exhibited the retained porous structure, such as mesoporous carbon with a three-dimensionally connected pore system after intercalation of the polypyrrole layer. In addition, the controllable addition of pyrrole monomer can provide the mesoporous carbon-polypyrrole nanocomposites with a tunable amount of polypyrrole and texture property. The polypyrrole layer improved the electrode performance in the electrochemical double layer capacitor. This improved electrochemical performance was attributed to the high surface area, open pore system with three-dimensionally interconnected mesopores, and reversible redox behavior of the conducting polypyrrole. Furthermore, the correlation between the amount of polypyrrole and capacitance was investigated to check the effect of the polypyrrole layer on the electrochemical performance.

Keywords

References

  1. . Hughes, G. Z. Chen, M. S. P. Shaffer, D. J. Fray, and A. H. Windle, Chem. Mater., 14, 1610 (2002) https://doi.org/10.1021/cm010744r
  2. C. Zhou, S. Kumar, C. D. Doyle, and J. M. Tour, Chem. Mater., 17, 1997 (2005) https://doi.org/10.1021/cm047882b
  3. Y. D. Kim, D. H. Park, S. W. Nam, and T. J. Park, Macromol. Res., 10, 215 (2002) https://doi.org/10.1007/BF03218308
  4. J. Y. Lee, D. W. Park, and J. O. Lim, Macromol. Res., 11, 481 (2003) https://doi.org/10.1007/BF03218980
  5. J.-Y. Kwon, E.-Y. Kim, and H.-D. Kim, Macromol. Res., 12, 303 (2004) https://doi.org/10.1007/BF03218404
  6. Y. Kim and E. Kim, Macromol. Res., 14, 584 (2006) https://doi.org/10.1007/BF03218728
  7. J. Keum, C.-S. Ha, and Y. Kim, Macromol. Res., 14, 401 (2006) https://doi.org/10.1007/BF03219101
  8. J. Jang, J. Ha, and S. Kim, Macromol. Res., 15, 154 (2007) https://doi.org/10.1007/BF03218767
  9. J. Jang, J. H. Oh, and G. D. Stucky, Angew. Chem., Int. Ed., 41, 4016 (2002) https://doi.org/10.1002/1521-3773(20021104)41:21<4016::AID-ANIE4016>3.0.CO;2-G
  10. J. Jang, Adv. Polym. Sci., 199, 189 (2006) https://doi.org/10.1007/12_075
  11. J.-C. Park, J. S. Kim, and D. H. Jung, Macromol. Res., 10, 181 (2002) https://doi.org/10.1007/BF03218303
  12. JK. S. Ryu, S. H. Chang, S.-K. Kwon, Y.-H. Kim, and D.-H. Hwang, Macromol. Res., 10, 40 (2002) https://doi.org/10.1007/BF03218287
  13. M. Choi and R. Ryoo, Nat. Mater., 2, 473 (2003) https://doi.org/10.1038/nmat923
  14. C. H. Kim, S. S. Kim, F. Guo, T. P. Hogan, and T. J. Pinnavaia, Adv. Mater., 16, 736 (2004) https://doi.org/10.1002/adma.200305692
  15. J. Jang and J. H. Oh, Chem. Commun., 882 (2004)
  16. J. Jang, B. Lim, and M. Choi, Chem. Commun., 4214 (2005)
  17. J. Jang, B. Lim, J. Lee, and T. Hyeon, Chem. Commun., 83 (2001)
  18. J. Jang and B. Lim, Angew. Chem., Int. Ed., 42, 5600 (2003) https://doi.org/10.1002/anie.200352113
  19. E. Frackowiak, K. Jurewica, S. Delpeux, and F. Beguin, J. Power Sources, 97, 822 (2001) https://doi.org/10.1016/S0378-7753(01)00736-4
  20. Y. Sun, S. R. Wilson, and D. I. Schuster, J. Am. Chem. Soc., 123, 5348 (2001) https://doi.org/10.1021/ja0041730