• Title/Summary/Keyword: Chemical structure analysis

Search Result 1,787, Processing Time 0.028 seconds

Preparation of Carbon Nanofibers by Catalytic CVD and Their Purification

  • Lim, Jae-Seok;Lee, Seong-Young;Park, Sei-Min;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.6 no.1
    • /
    • pp.31-40
    • /
    • 2005
  • The carbon nanofibers (CNFs) were synthesized through the catalytic decomposition of hydrocarbons in a quartz tube reactor. The CNFs prepared from $C_3H_8$ at $550^{\circ}C$ was selected as the purification sample due to the higher content of impurity than that prepared from other conditions. In this study, we carried out the purification of CNFs by oxidation in air or carbon dioxide after acid treatment, and investigated the influence of purification parameters such as kind of acid, concentration, oxidation time, and oxidation temperature on the structure of CNFs. The metal catalysts could be easily eliminated from the prepared CNFs by liquid phase purification with various acids and it was verified by ICP analysis, in which, for example, Ni content decreased from 2.51% to 0.18% with 8% nitric acid. However, the particulate carbon and heterogeneous fibers were not removed from the prepared CNFs by thermal oxidation in air and carbon dioxide. This result can be explained by that the direction of graphene sheet in CNFs is vertical to the fiber axis and the CNFs are oxidized at about the similar rate with the impurity carbon.

  • PDF

Magnetic Properties of Sn1-xFexO2 Thin Films and Powders Grown by Chemical Solution Method

  • Li, Yong-Hui;Shim, In-Bo;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.161-164
    • /
    • 2009
  • Iron-doped $Sn_{1-x}Fe_xO_2$ (x = 0.0, 0.05, 0.1, 0.2, 0.33) thin films on Si(100) substrates and powders were prepared by a chemical solution process. The x-ray diffraction (XRD) patterns of the $Sn_{1-x}Fe_xO_2$ thin films and powders showed a polycrystalline rutile tetragonal structure. Thermo gravimetric (TG) - differential thermal analysis (DTA) showed the final weight loss above $430{^{\circ}C}$ for all powder samples. According to XRD Rietveld refinement of the powders, the lattice parameters and unit cell volume decreased with increasing Fe content. The magnetic properties were characterized using a vibrating sample magnetometer (VSM) and M$\ddot{o}$ssbauer spectroscopy. The thin film samples with x = 0.1 and 0.2 showed paramagnetic properties but thin films with x = 0.33 exhibited ferromagnetic properties at room temperature. Mossbauer studies revealed the $Fe^{3+}$ valence state in the samples. The ferromagnetism in the samples can be interpreted in terms of the direct ferromagnetic coupling of ferric ions via an electron trapped in a bridging oxygen deficiency, which can be explained using the F-center exchange model.

Fabrication and Characterization of Porous Non-Woven Carbon Based Highly Sensitive Gas Sensors Derived by Magnesium Oxide

  • Kim, Yesol;Cho, Seho;Lee, Sungho;Lee, Young-Seak
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.254-259
    • /
    • 2012
  • Nanoporous non-woven carbon fibers for a gas sensor were prepared from a pitch/polyacrylonitrile (PAN) mixed solution through an electrospinning process and their gas-sensing properties were investigated. In order to create nanoscale pores, magnesium oxide (MgO) powders were added as a pore-forming agent during the mixing of these carbon precursors. The prepared nanoporous carbon fibers derived from the MgO pore-forming agent were characterized by scanning electron microscopy (SEM), $N_2$-adsorption isotherms, and a gas-sensing analysis. The SEM images showed that the MgO powders affected the viscosity of the pitch/PAN solution, which led to the production of beaded fibers. The specific surface area of carbon fibers increased from 2.0 to $763.2m^2/g$ when using this method. The template method therefore improved the porous structure, which allows for more efficient gas adsorption. The sensing ability and the response time for the NO gas adsorption were improved by the increased surface area and micropore fraction. In conclusion, the carbon fibers with high micropore fractions created through the use of MgO as a pore-forming agent exhibited improved NO gas sensitivity.

Synthesis of polyphenylcarbosilane via thermal rearrangement of polymethylphenylsilane in supercritical cyclohexane

  • Shin, Hee-Yong;Ryu, Jae-Hun;Bae, Seong-Youl;Lee, Yoon-Joo;Kwon, Woo-Teck;Kim, Young-Hee;Kim, Soo-Ryong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • A new process for the synthesis of polyphenylcarbosilane (PPCS) via thermal rearrangement of polymethylphenylsilane (PMPS) in supercritical cyclohexane was proposed and investigated at reaction temperatures of $380-420^{\circ}C$, reaction times of 1-2 h, and a pressure of 15 MPa. The structure, molecular weight, and molecular weight distribution of the product were characterized by FT-IR, Si-NMR, and GPC. The ceramic yield was also measured by TGA analysis. High-quality PPCS with high molecular weight and ceramic yield can be synthesized via a supercritical process. Furthermore, this process, when compared to the conventional method, tends to moderate the reaction conditions such as reaction temperature and time. It is concluded that thermal rearrangement in supercritical fluid is an efficient and viable process in terms of the resulting yield, efficiency, and reaction time compared with those of the conventional PCS production process.

Electrochemical Behaviors of PEO-treated Ti-6Al-4V Alloy in Solution Containing Zn and Si Ions

  • Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.160-160
    • /
    • 2017
  • Commercially pure titanium (Cp-Ti) and Ti alloys (typically Ti-6Al-4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally. Ti and its alloys are not bioactive. Therefore, they do not chemically bond to the bone, whereas they physically bond with bone tissue. The electrochemical deposition process provides an effective surface for biocompatibility because large surface area can be served to cell proliferation. Plasma electrolyte oxidation (PEO) enables control in the chemical composition, porous structure, and thickness of the TiO2 layer on Ti surface. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation, and is also the most abundant trace element in bone. The objective of this work was to study on electrochemical behaviors of PEO-treated Ti-6Al-4V Alloy in solution containing Zn and Si ions. The morphology, the chemical composition, and the microstructure analysis of the sample were examined using FE-SEM, EDS, and XRD. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat. The promising results successfully demonstrated the immense potential of Si/Zn-TiO2 coatings in dental and biomaterials applications.

  • PDF

Mechanical Properties of Styrene-Butadiene Rubber Reinforced with Silica by in situ Tetraethoxysilane Hydrolysis over Acid Catalyst

  • Li, Qingyuan;Li, Xiangxu;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.57-66
    • /
    • 2018
  • Styrene-butadiene rubber (SBR), reinforced with different contents of silica (with or without modification using silane coupling agents), was prepared by a modified sol-gel method involving hydrolyzation of tetraethoxysilane over an acid catalyst. The structures of the as-prepared samples were characterized using various techniques, such as scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The mechanical properties of the as-prepared samples were discussed in detail. The results revealed an increasing of the storage modulus (G') with increase in the silica content without modification. In contrast, G' decreased after modification using silane coupling agents, indicating a reduction in the silica-silica interaction and improved dispersion of silica in the SBR matrix. Both tensile stress and hardness increased with increase in the silica content (with modification) in the SBR matrix, albeit with low values compared to the samples with un-modified silica, except for the case of silica modified using (3-glycidyloxypropyl) trimethoxysilane (GPTS). The latter observation can be attributed to the special structure of GPTS and the effort of oxygen atom lone-pair.

Effect of Solution Properties on Luminance Characteristics of YAG:Ce Phosphors Prepared by Spray Pyrolysis (분무열분해법으로 YAG:Ce 제조시 용액 조건이 발광특성에 미치는 영향)

  • Lee, You-Mi;Kang, Tae-Won;Jung, Kyeong-Youl
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.220-225
    • /
    • 2012
  • YAG:Ce yellow phosphor particles were synthesized by spray pyrolysis with changing the solution properties and their luminous properties, crystal structure, and morphological changes were studied by using PL measurement, XRD, and SEM analysis. It was clear that the solution properties significantly affected the crystal phase, crystallite size, the PL intensity, and the morphology of YAG:Ce particles. At low calcination temperature, the addition of urea only to the spray solution was helpful to form a pure YAG phase without any impurity phases, as the result, the highest luminescence intensity was achieved at the calcination temperature of $900^{\circ}C$. When the calcination temperatures were larger than $1300^{\circ}C$, however, the YAG particles prepared without any additive showed the highest luminescent intensity. Regardless of the solution conditions, the emission intensity of YAG:Ce particles prepared by spray pyrolysis showed a linear relation with the crystallite size. In terms of the morphology of YAG:Ce particles, the addition of both DCCA and $NH_4OH$ to the spray solution was effective to prepare a spherical and dense structured YAG particles.

Cycling Performance and Surface Chemistry of Si-Cu Anode in Ionic Liquid Battery Electrolyte Diluted with Dimethyl Carbonate

  • Nguyen, Cao Cuong;Kim, Dong-Won;Song, Seung-Wan
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.8-13
    • /
    • 2011
  • Interfacial compatibility between the Si-Cu electrode and diluted ionic liquid electrolyte containing 50 vol.% of 1M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)/1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide (MPP-TFSI) and 50 vol.% dimethyl carbonate (DMC) in a lithium cell and dilution effect on surface chemistry are examined. ex-situ ATR FTIR analysis results reveal that the surface of the Si-Cu electrode cycled in the diluted ionic liquid electrolyte is effectively passivated with the SEI layer mainly composed of carboxylate salts-containing polymeric compounds produced by the decomposition of DMC. Surface species by the decomposition of TFSI anion and MPP cation are found to be relatively in a very low concentration level. Passivation of electrode surface with the SEI species contributes to protect from further interfacial reactions and to preserve the electrode structure over 200 cycles, delivering discharge capacity of > 1670 $mAhg^{-1}$ and capacity retention of 88% of maximum discharge capacity.

A Numerical Study on Coal Devolatilization of Bituminous Coal Using CPD Model

  • Kim, Ryang-Gyoon;Lee, Byoung-Hwa;Jeon, Chung-Hwan;Chang, Young-June;Song, Ju-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2898-2903
    • /
    • 2008
  • The coal considerably is the energy resource which is important with the new remarking energy resource. The coal conversion has two processes which are coal devolatilization and char oxidation. Coal devolatilization is important because it describes up to 70% weight loss and has been shown that nitrogen contribute 60 to 80% of the total NOx produced. The chemical percolation devolatilization(CPD) model is used here to describe coal devolatilization. The model was developed to describe coal devolatilization behavior of rapidly heated coal based on characteristics of the chemical structure of the parent coal. This paper describes CPD model in detail and makes an analysis of Shenhua coal(bituminous) which is used calculated 13-C NMR(carbon-nuclear magnetic resonance).

  • PDF

Homology Modeling and Molecular Docking Analysis of Streptomyces peucetius CYP125A4 as C26 Monooxygenase

  • Lee, Seung-Won;Lee, Na-Rae;Lee, Ji-Hun;Oh, Tae-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1885-1889
    • /
    • 2012
  • Among 23 cytochrome P450s, CYP125A4 was proposed as a putative monooxygenase based on the high level of amino acid sequence homology (54% identity and 75% similarity) with the well characterized C27-steroid $Mycobacterium$ $tuberculosis$ CYP125A1. Utilizing MTBCYP125A1 as a template, homology modeling of SPCYP125A4 was conducted by Accelrys Discovery Studio 3.1 software. The modeled SPCYP125A4 structure with lowest energy value was subsequently assessed for its stereochemical quality and side-chain environment. The final model was generated by showing its active site through the molecular dynamics. The docking of steroids showed broad specificity of SPCYP125A4 with different orientation of ligand within active site facing the heme. One poses of C27-steroid with C26 facing the heme with distance of 3.734 ${\AA}$ from the Fe were predominant.