Browse > Article
http://dx.doi.org/10.7473/EC.2018.53.2.57

Mechanical Properties of Styrene-Butadiene Rubber Reinforced with Silica by in situ Tetraethoxysilane Hydrolysis over Acid Catalyst  

Li, Qingyuan (Research Center of Eco-Friendly & High Performance Chemical Materials, Korea University of Technology and Education)
Li, Xiangxu (Research Center of Eco-Friendly & High Performance Chemical Materials, Korea University of Technology and Education)
Cho, Ur Ryong (Research Center of Eco-Friendly & High Performance Chemical Materials, Korea University of Technology and Education)
Publication Information
Elastomers and Composites / v.53, no.2, 2018 , pp. 57-66 More about this Journal
Abstract
Styrene-butadiene rubber (SBR), reinforced with different contents of silica (with or without modification using silane coupling agents), was prepared by a modified sol-gel method involving hydrolyzation of tetraethoxysilane over an acid catalyst. The structures of the as-prepared samples were characterized using various techniques, such as scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The mechanical properties of the as-prepared samples were discussed in detail. The results revealed an increasing of the storage modulus (G') with increase in the silica content without modification. In contrast, G' decreased after modification using silane coupling agents, indicating a reduction in the silica-silica interaction and improved dispersion of silica in the SBR matrix. Both tensile stress and hardness increased with increase in the silica content (with modification) in the SBR matrix, albeit with low values compared to the samples with un-modified silica, except for the case of silica modified using (3-glycidyloxypropyl) trimethoxysilane (GPTS). The latter observation can be attributed to the special structure of GPTS and the effort of oxygen atom lone-pair.
Keywords
silica; sol-gel; catalysis; in situ; styrene-butadiene rubber;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Kohjiya, K. Murakami, S. Iio, T. Tanahashi, and Y. Ikeda, "In Situ Filling of Silica onto "Green" Natural Rubber by the Sol-Gel Process", Rubber Chem. Technol., 74, 16 (2001).   DOI
2 S. Poompradub, M. Thirakulrati, and P. Prasassarakich, "In situ generated silica in natural rubber latex via the sol-gel technique and properties of the silica rubber composites", Mater. Chem. Phys., 144, 122 (2014).   DOI
3 F. Makavipour and R. M. Pashley, "A study of ion adsorption onto surface functionalized silica particles", Chem. Eng. J., 262, 119 (2015).   DOI
4 J. Lauwaert, E. De Canck, D. Esquivel, J. W. Thybaut, P. Van Der Voort, and G. B. Marin, "Silanol-Assisted Aldol Condensation on Aminated Silica: Understanding the Arrangement of Functional Groups", Chem. Cat. Chem., 6, 255 (2014).
5 S. Rostamnia and E. Doustkhah, "Nanoporous silica-sup- ported organocatalyst: a heterogeneous and green hybrid catalyst for organic transformations", RSC Advances, 4, 28238 (2014).   DOI
6 T. Theppradit, P. Prasassarakich, and S. Poompradub, "Surface modification of silica particles and its effects on cure and mechanical properties of the natural rubber composites", Mater. Chem. Phys., 148, 940 (2014).   DOI
7 S. H. Xu, J. Gu, Y. F. Luo, and D. M. Jia, "Effects of partial replacement of silica with surface modified nanocrystalline cellulose on properties of natural rubber nanocomposites", Express Polym. Lett., 6, 1 (2012).   DOI
8 E. Miloskovska, E. Nies, D. Hristova-Bogaerds, M. van Duin, and G. de With, "Influence of reaction parameters on the structure of in situ rubber/silica compounds synthesized via sol-gel reaction", J. Polym. Sci. Pol. Phys., 52, 967 (2014).   DOI
9 Y. Ikeda and S. Kohjiya, "In situ formed silica particles in rubber vulcanizate by the sol-gel method", Polym., 38, 4417 (1997).   DOI
10 Y. Ikeda, A. Tanaka, and S. Kohjiya, "Effect of catalyst onin situ silica reinforcement of styrene-butadiene rubber vulcanizate by the sol-gel reaction of tetraethoxysilane", J. Mater. Chem., 7, 455 (1997).   DOI
11 H. Tanahashi, S. Osanai, M. Shigekuni, K. Murakami, Y. Ikeda, and S. Kohjiya, "Reinforcement of Acrylonitrile-Butadiene Rubber by Silica Generated in situ", Rubber Chemistry and Technology, 71, 38 (1998).   DOI
12 S. Poompradub, S. Kohjiya, and Y. Ikeda, "Natural rubber/in situ silica nanocomposite of a high silica content", Chem. Lett., 34, 672 (2005).   DOI
13 J. Siramanont, V. Tangpasuthadol, A. Intasiri, N. Na-Ranong, and S. Kiatkamjornwong, "Sol-gel process of alkyltriethoxysilane in latex for alkylated silica formation in natural rubber", Polymer Engineering & Science, 49, 1099 (2009).   DOI
14 A. K. Manna, P. P. De, D. K. Tripathy, S. K. De, and D. G. Peiffer, "Bonding between precipitated silica and epoxidized natural rubber in the presence of silane coupling agent", J. Appl. Polym. Sci., 74, 389 (1999).   DOI
15 Y. Ikeda, S. Poompradub, Y. Morita, and S. Kohjiya, "Preparation of high performance nanocomposite elastomer: effect of reaction conditions on in situ silica generation of high content in natural rubber", J. Sol-Gel Sci. Technol., 45, 299 (2008).   DOI
16 F. Asaro, A. Benedetti, I. Freris, P. Riello, and N. Savko, "Evolution of the nonionic inverse microemulsion- acid-TEOS system during the synthesis of nanosized silica via the sol-gel process", Langmuir, 26, 12917 (2010).   DOI
17 Y. Li, B. Han, S. Wen, Y. Lu, H. Yang, L. Zhang, and L. Liu, "Effect of the temperature on surface modification of silica and properties of modified silica filled rubber composites", Compos. Part A-Appl. Sci. Manuf., 62, 52 (2014).   DOI
18 Q. Zhu, Q. Gao, Y. Guo, C. Q. Yang, and L. Shen, "Modified silica sol coatings for highly hydrophobic cotton and polyester fabrics using a one-step procedure", Ind. Eng. Chem. Res., 50, 5881 (2011).   DOI
19 V. Tangpasuthadol, A. Intasiri, D. Nuntivanich, N. Niyompanich, and S. Kiatkamjornwong, "Silica-reinforced natural rubber prepared by the sol-gel process of ethoxysilanes in rubber latex", J. Appl. Polym. Sci., 109, 424 (2008).   DOI
20 B. Karmakar, G. De, and D. Ganguli, "Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS", J. Non-Cryst. Solids, 272, 119 (2000).   DOI
21 L. Zhang, Z. Xing, H. Zhang, Z. Li, X. Wu, X. Zhang, Y. Zhang, and W. Zhou, "High thermostable ordered meso- porous $SiO_2-TiO_2$ coated circulating-bed biofilm reactor for unpredictable photocatalytic and biocatalytic performance", Appl. Catal. B-Environ., 180, 521 (2016).   DOI
22 S. P. Chenakin, G. Melaet, R. Szukiewicz, and N. Kruse, "XPS study of the surface chemical state of a Pd/($SiO_2+TiO_2$) catalyst after methane oxidation and $SiO_2$ reatment", J. Catal., 312, 1 (2014).   DOI
23 Y. Zhang, K. Y. Rhee, and S. J. Park, "Nanodiamond nano- cluster-decorated graphene oxide/epoxy nanocomposites with enhanced mechanical behavior and thermal stability", Comps. Part B-Eng., 114, 111 (2017).   DOI
24 D. E. El-Nashar, E. A. M. Youssef, and M. A. A. El-Ghaffar, "Modified phosphate pigments as high performance reinforcing materials for rubber vulcanizates", Mater. Design, 31, 1350 (2010).   DOI
25 C. Amornchaiyapitak, W. Taweepreda, and P. Tangboriboonrat, "Modification of epoxidised natural rubber film surface by polymerisation of methyl methacrylate", Eur. Polym. J., 44, 1782 (2008).   DOI
26 Y. Zhang, X. Ge, F. Deng, M. C. Li, and U. R. Cho, "Fabrication and characterization of rice bran carbon/styrene butadiene rubber composites fabricated by latex compounding method", Polym. Compos., (2015).
27 T. Xu, Z. Jia, Y. Luo, D. Jia, and Z. Peng, "Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites", Appl. Surf. Sci., 328, 306 (2015).   DOI
28 L. J. Murphy, E. Khmelnitskaia, M. J. Wang, and K. Mahmud, "Carbon-Silica Dual Phase Filler: Part IV. Surface Chemistry", Rubber Chem. Technol., 71, 1015 (1998).   DOI
29 N. M. Ahmed, D. E. El-Nashar, and S. L. A. El-Messieh, "Utilization of new micronized and nano-CoO.MgO/kaolin mixed pigments in improving the properties of styrene-butadiene rubber composites", Mater. Design, 32, 170 (2011).   DOI
30 S. Prasertsri and N. Rattanasom, "Fumed and precipitated silica reinforced natural rubber composites prepared from latex system: mechanical and dynamic properties", Polym. Test, 31, 593 (2012).   DOI
31 M. J. Wang, "Effect of filler-elastomer interaction on tire tread performance", KGK. Kaut. Gummi Kunst., 61, 33 (2008).
32 N. Suzuki, F. Yatsuyanagi, M. Ito, and H. Kaidou, "Effects of surface chemistry of silica particles on secondary structure and tensile properties of silica-filled rubber systems", J. Appl. Polym. Sci., 86, 1622 (2002).   DOI
33 J. Shen, J. Liu, Y. Gao, X. Li, and L. Zhang, "Elucidating and tuning the strain-induced non-linear behavior of polymer nanocomposites: a detailed molecular dynamics simulation study", Soft Matter., 10, 5099 (2014).   DOI
34 E. Jaber, H. Luo, W. Li, and D. Gersappe, "Network forma- tion in polymer nanocomposites under shear", Soft Matter., 7, 3852 (2011).   DOI
35 H. Qiao, M. Chao, D. Hui, J. Liu, J. Zheng, W. Lei, X. Zhou, R. Wang, and L. Zhang, "Enhanced interfacial interaction and excellent performance of silica/epoxy group-functionalized styrene-butadiene rubber (SBR) nanocomposites without any coupling agent", Compos. Part B-Eng., 114, 356 (2017).   DOI
36 F. Yatsuyanagi, N. Suzuki, M. Ito, and H. Kaidou, "Effects of secondary structure of fillers on the mechanical properties of silica filled rubber systems", Polym., 42, 9523 (2001).
37 S. S. Choi, C. Nah, and B. W. Jo, "Properties of natural rubber composites reinforced with silica or carbon black: influence of cure accelerator content and filler dispersion", Polym. Int., 52, 1382 (2003).   DOI
38 F. Yatsuyanagi, N. Suzuki, M. Ito, and H. Kaidou, "Effects of surface chemistry of silica particles on the mechanical properties of silica filled styrene-butadiene rubber systems", Polym. J., 34, 332 (2002).   DOI
39 X. Liu, S. Zhao, X. Zhang, X. Li, and Y. Bai, "Preparation, structure, and properties of solution-polymerized styrene-butadiene rubber with functionalized end-groups and its silica-filled composites", Polym., 55, 1964 (2014).   DOI
40 T. Sittiphan, P. Prasassarakich, and S. Poompradub, "Styrene grafted natural rubber reinforced by in situ silica generated via sol-gel technique", Mater. Sci. Eng.-B, 181, 39 (2014).   DOI
41 T. H. Mokhothu, A. S. Luyt, and M. Messori, "Reinforcement of EPDM rubber with in situ generated silica particles in the presence of a coupling agent via a sol-gel route", Polym. Test, 33, 97 (2014).   DOI
42 C. Lin Jr, W. L. Hergenrother, and A. S. Hilton, "Mooney viscosity stability and polymer filler interactions in silica filled rubbers", Rubber Chem. Technol., 75, 215 (2002).   DOI
43 K. J. Kim, and J. VanderKooi, "Temperature effects of silane coupling on moisture treated silica surface", J. Appl. Polym. Sci., 95, 623 (2005).   DOI
44 H. Qiao, R. Wang, H. Yao, X. Wu, W. Lei, X. Zhou, X. Hu, and L. Zhang, "Design and preparation of natural layered silicate/bio-based elastomer nanocomposites with improved dispersion and interfacial interaction", Polym., 79, 1 (2015).   DOI
45 J. Frohlich, W. Niedermeier, and H. D. Luginsland, "The effect of filler-filler and filler-elastomer interaction on rubber reinforcement", Compos. Part A-Appl. Sci. Manuf., 36, 449 (2005).   DOI