• Title/Summary/Keyword: Chemical structure analysis

Search Result 1,786, Processing Time 0.041 seconds

Atomic Structure Analysis of A ZnO/Pd Interface by Atomic Resolution HVTEM

  • Saito, Hiromitsu;Ichinose, Hideki
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.41-46
    • /
    • 2006
  • Interfacial atomic structure (chemical structure) of a Pd/ZnO hetero junction was investigated by atomic resolution high voltage transmission electron microscopy (ARHVTEM). A misfit dislocation did not work as a stress accommodation mechanism in the ZnO(0001)/Pd (111) interface. But the periodic stress localization occurred in the ZnO($10\bar{1}0$)/(200) interface. The periodicity of the local strain coincided with that of misfit dislocation. Atomic structure image of the ARHVTEM showed that an atomic arrangement across the interface was in the order of O-Zn-Pd. It was shown that mechanical weakness of the ZnO(0001)/Pd(111) interface against cyclic heating is attributable to the absence of the periodic stress localization of the misfit dislocation.

Analysis of Structure and Physical and Chemical Properties of the Carbonized Pine Wood (Pinus densiflora Sieb. et Zucc.) Materials - Pyrolytic Behavior of Pine Wood Dust - (가열처리 및 탄화처리 소나무재(Pinus densiflora Sieb. et Zucc.)의 구조 및 물리·화학적 특성(III) - 소나무재 톱밥의 열분해 반응 -)

  • Lee, In-Ja;Lee, Won-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.266-274
    • /
    • 2014
  • To extend the understanding of the pyrolysis mechanism of wood, we have investigated wood dust charcoal and condensate of volatile organic compounds (VOC) obtained during the pyrolysis of red pine (Pinus densiflora Sieb. et Zucc.) at $180{\sim}450^{\circ}C$ using elemental analysis, IR and GC/Mass. The effect of activation process on the charcoal structure also has been studied by comparing elemental analysis and IR data of charcoal carbonated at $600^{\circ}C$ and charcoals activated at $750^{\circ}C$. The results show that pyrolysis of wood has mainly started near at $240^{\circ}C$ and its chemical components did not changed much up to $270^{\circ}C$. However, the element contents and IR spectra drastically changed at $300^{\circ}C$. The fact that IR peaks related to the aromatic ring of lignin are observed in the charcoal pyrolized at $450^{\circ}C$ indicates that a small part of lignin still remains at this temperature. The chemical structure of the activated charcoal seems almost unaffected by the activation time.

Structural Design and Installation of Tracking-type Floating PV Generation System (추적식 수상 태양광발전 시스템의 설계 및 시공)

  • Kim, Sun-Hee;Lee, Young-Guen;Seo, Su-Hong;Joo, Hyung-Joong;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.59-65
    • /
    • 2014
  • Most of energy are obtained from oil, coal, and natural gas, most likely, fossil fuel which is limited throughout the world. Recently, high crude oil price, climate change, oil depletion, etc. are main reason to get attention to non-fossil energy including renewable energy in the world. In this study, we studied analysis and design of structure system composed of pultruded fiber reinforced polymer composite (PFRP) which has many advantages such as high specific strength and stiffness, high corrosion resistance and chemical resistance. For the design and construction of floating-type structure, PFRP structural members may be the first choice. Design of tracking-type floating PV generation structure was performed by using the results of the finite element analysis. The structure is fabricated and installed on the water surface. Before the installation of the structure, safety related problems associated with installation and operation are investigated using the finite element simulation and it was found that the structure is safe enough to resist externally applied loads.

Solution Structure of 21-Residue Peptide (Asp 84-Leu 104), Functional Site derived from $p16^{INK4A}$ ($p16^{INK4A}$ 단백질 활성부위(Asp 84-Leu 104)의 용액상 구조)

  • Lee, Ho-Jin;Ahn, In-Ae;Ro, Seonggu;Choi, Young-Sang;Yoon, Chang No;Lee, Kang-Bong
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.494-503
    • /
    • 2000
  • A 21-residue peptide corresponding to amino acids 84-104 of $p16^{INK4A}$, the tumor suppressor, has been synthesized and its structure was studied by Circular Dichroism, $^1H$ NMR spectroscopy and molecular modeling. A p16-derived peptide (84-104 amino acids) forming stable complex with CDK4 and CDK6 inhibits the ability of CDK4/6 to phosphorylate pRb in vitro, and blocks cell-cycle progression through G1/S phase as shown in the function of the full-length p16. Its NMR spectral data including NOEs, $^3J_{NH-H{\alpha}}$ coupling constants, $C_{\alpha}H$ chemical shift, the average amplitude of amide chemical shift oscillation and temperature coefficients indicate that the secondary structure of a p16-derived peptide is similar to that of the same region of full-length p16, which consists of helix-turn-helix structure. The 3-D distance geometry structure based on NOE-hased distance and torsion angle restraints is characterized by ${\gamma}$-turn conformation between residues $Gly^{89}-Leu^{91}$(${\varphi}_{i+1}=-79.8^{\circ}$, ${\varphi}_{i+1}=60.2^{\circ}$) as evidenced in a single crystal structure for the corresponding region of p18 or p19, but is undefined at both the N and C termini. This compact and rigid ${\gamma}$-turn region is considered to stabilize the structure of p16-derived peptide and serve as a site recognizing cyelin dependent kinase, and this well-defined ${\gamma}$-turn structure could be utilized for the design of anti-cancer drug candidates.

  • PDF

Preparation and Characterization of Palladium Nanoparticles Supported on Nickel Hexacyanoferrate for Fuel Cell Application

  • Choi, Kwang-Hyun;Shokouhimehr, Mohammadreza;Kang, Yun Sik;Chung, Dong Young;Chung, Young-Hoon;Ahn, Minjeh;Sung, Yung-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1195-1198
    • /
    • 2013
  • Nickel hexacyanoferrate supported palladium nanoparticles (Pd-NiHCF NPs) were synthesized and studied for oxygen reduction reactions in direct methanol fuel cell. The NiHCF support was readily synthesized by a comixing of $Ni(OCOCH_3)_2$ and equimolar $K_3[Fe(CN)_6]$ solution into DI water under rigorous stirring. After the preparation of NiHCF support, Pd NPs were loaded on NiHCF via L-ascorbic acid reduction method at $80^{\circ}C$. Pd-NiHCF NPs were electrochemically active for oxygen reduction reaction in 0.1 M $HClO_4$ solution. X-ray absorption near edge structure analysis was conducted to measure the white line intensity of Pd-NiHCF to verify the OH adsorption. As a comparison, carbon supported Pd NPs exhibited same white line intensity. This study provides a general synthetic approach to easily load Pd NPs on porous coordination polymers such as NiHCF and can provide further light to load Pd based alloy NPs on NiHCF framework.

Nonstoichiometry and Physical Properties of the Perovskite $CaGa_{1-x}Fe_xO_{3-y}$ System (페롭스카이트 $CaGa_{1-x}Fe_xO_{3-y}$계의 비화학량론과 물리적 성질)

  • Rho, Kwon Sun;Ryu, Kwang Hyun;Chang, Soon Ho;Yo, Chul Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.5
    • /
    • pp.295-301
    • /
    • 1996
  • A series of solid solutions of the $CaGa_1-xFexO_3-y$ system with the compositions of x=0.25, 0.50, 0.75, and 1.00 has been prepared at $1150^{\circ}C$ under an atmospheric air pressure. The structure, nonstoichiometric chemical formula, and the distribution of cations for the solid solutions are determined by X-ray diffraction analysis, Mohr salt titration, Mossbauer spectroscopic analysis. Their physical properties are discussed with electrical conductivity and magnetic measurements. The crystal system of all the compositions is a brownmillerite orthorhombic system from the X-ray diffraction analysis and the reduced lattice volume increases linearly with x value except that of the composition of x=0.25. All the solid solutions do not contain $Fe^{4+}$ ion and the mole number of oxygen vacancies or y value is 0.50 from Mohr salt analysis. The oxidation state of Fe ion, the coordination state, the structure change in the Brownmillerite-type structure, and the distribution of $Ga^{3+}$ and $Fe^{3+}$ ions are discussed with Mossbauer spectroscopic analysis. The electrical conductivity increases and activation energy decreases, as x value increases. The traditional semiconducting property of this system is described in terms of band theory. The compositions of x=0.50∼1.00 show a thermal magnetic hysteresis in the magnetic measurement with the cooling conditions, which is discussed in terms of the space group and Dzyaloshinsky-Moriya interaction.

  • PDF

Investigation on Thermal and Chemical Effects of CO2 in Oxygen Enriched Flame (산소부화화염내 CO2의 열 및 화학적 효과에 대한 연구)

  • Kum Sung Min;Lee Chang Eon;Han Ji Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.617-624
    • /
    • 2005
  • An analysis of the effects of $CO_{2}$ on fundamental combustion characteristics was performed in Oxygen enriched condition by comparing the laminar burning velocities, flame structures, fuel oxidation paths. Fictitious $CO_{2}$ was introduced to discriminate the chemical reaction effects of $CO_{2}$ from the thermal effects. PREMIX code was utilized to evaluate the laminar burning velocities. OPPDIF code was utilized to investigate the flame structure and fuel oxidation path variation. The contributions of thermal effects on laminar burning velocities are dominant at lowly oxygen-enriched condition but those of chemical reaction effects become dominant at highly oxygen-enriched condition. Chemical reaction effects caused the additional flame temperature decrease besides thermal effects and oxygen-leakage increase in non-premixed flame. Specific fuel oxidation path and CO production path is enhanced in spite of overall decrement of fuel consumption rate by chemical reaction effects of$CO_{2}$.

Instrumental Analysis of the Human Hair Damaged by Bleaching Treatments - Focused on ATR FT-IRM -

  • Ha, Byung-Jo
    • Journal of Fashion Business
    • /
    • v.12 no.6
    • /
    • pp.23-33
    • /
    • 2008
  • The physico-chemical characteristics by bleaching treatments were assessed by several instrumental analyses such as surface morphology, chemical structural change, color change as well as tensile strength. The change of morphological characteristic was observed through scanning electron microscope(SEM). The observation of the fine structure on hair surface by SEM showed the bleached hair had much damaged to hair cuticle, and some of cuticle surface were worn away. To investigate the chemical structural changes in hair keratin, the cross-sections of hair samples were directly analysed using Fourier transform infrared microspectroscopy(FT-IRM). The results showed the cysteic acid S=O band intensity was distinctively increased by performing the bleaching treatment. The cleavage of cystine was appeared to proceed primarily through the sulfur-sulfur (-S-S-) fission whereby cysteic acid was formed as a principal oxidation products. The distribution of amide I band in hair keratin was determined by attenuated total reflectance(ATR) FT-IR mapping image. The results showed that the outer side of hair cortex was more damaged than the inner side of the hair cortex. Also, during chemical bleaching of the hair with alkaline peroxide, the hair was turned to reddish yellow due to the oxidative degradation of eumelanin. This means the eumelanin is more unstable than pheomelanin in chemical oxidation. With bleaching, the tensile strength was also reduced as a results of the chemical oxidation.

Vapor Phase Epitaxy of Magnesium Oxide on Si(001) Using a Single Precursor

  • Lee, Sun-Sook;Lee, Sung-Yong;Kim, Chang G.;Lee, Sang-Heon;Nah, Eun-Ju;Kim, Yunsoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.122-122
    • /
    • 2000
  • Magnesium oxide is thermodynamically very stable, has a low dielectric constant and a low refractive index, and has been widely used as substrate for growing various thin film materials, particulary oxides of the perovskite structure. There has been a considerable interest in integrating the physical properties of these oxides with semiconductor materials such as GaAs and Si. In this regard, it is considered very important to be able to grow MgO buffer layers epitaxially on the semiconductors. Various oxide films can then be grown on such buffer layers eliminating the need for using MgO single crystal substrates. Vapor phase epitaxy of magnesium oxide has been accomplished on Si(001) substrates in a high vacuum chamber using the single precursor methylmagnesium tert-butoxide in the temperature range 750-80$0^{\circ}C$. For the epitaxy of the MgO films, SiC buffer layers had to be grown on Si(001). The films were characterized by reflection high energy electron diffraction (RHEED) in situ in the growth chamber, and x-ray diffraction (XRD), x-ray pole figure analysis, scanning electron microscopy (SEM), and x-ray photoelectron spectroscopy (XPS) after the growth.

  • PDF

Chemical Investigation of the Constitutive Phenolics of Rosa arabica; the Structure of a New Dimeric Phenolic Glycoside

  • Souleman, Ahmed M.A.;El-Mousallamy, Amani M.D.
    • Natural Product Sciences
    • /
    • v.6 no.2
    • /
    • pp.82-85
    • /
    • 2000
  • The aqueous ethanolic whole plant extract of Rosa arabica was found to contain the new natural dimeric phenolic compound, ellagic acid 3,3'-dimethyl ether $4-O-{\alpha}-rhamnopyranoside$, 9, along with ten known phenolic metabolites (1-8, 10 and 11). Structures of all compounds (1-11) were established by routine methods of analysis and confirmed by FAB-MS, $^1H\;and\;^{13}C$ NMR spectral analysis.

  • PDF