• Title/Summary/Keyword: Chemical structure

Search Result 7,791, Processing Time 0.031 seconds

Molecular and Crystal Structure of' Metalaxyl, $C_{15}H_{21}NO_4$ (Metalaxyl, $C_{15}H_{21}NO_4$의 분자 및 결정구조)

  • Keun Il Park;Young Kie Kim;Sung Il Cho;Man Hyung Yoo
    • Korean Journal of Crystallography
    • /
    • v.13 no.3_4
    • /
    • pp.148-151
    • /
    • 2002
  • The molecular and crystal structure of metalaxyl C/sub15/H/sub21/NO₄, was determined by single crystal x-ray diffraction study. Crystallographic data for, title compound P2₁/c, a=7.849(4) Å, b=13.081(5) Å, c=15.100(3) Å, β=101.8(2)°, V= 1517.6(3) ų, Z=4. The molecular. Structure model was solved by direct method and refined by full-matrix least- squares. The final reliable factor, R, is 0.067 for 1694 independent reflections (F/sub o//sup 2/>4σ(F/sub o//sup 2/)). The molecular structure of title compound shows an intramolecular hydrogen bond: Cl2-Hl2A…O1.

Optimization of synthesis conditions and $CO_2$ capture capability of Cu-BTC Metal-Organic Framework (이산화탄소 흡착용 Cu-BTC MOF 합성 최적화)

  • Peng, Mei Mei;Hemalatha, Pushparaj;Ganesh, Mani;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12a
    • /
    • pp.200-203
    • /
    • 2011
  • A copper-based metal organic framework (MOF) named Cu-BTC, also known as HKUST-1, was synthesized by using a solvothermal method at various synthesis temperature, time and pressure. The obtained samples were characterized with Powder X-ray diffraction (XRD) for phase structure, scanning electron microscopy (SEM) for crystal structure, and nitrogen adsorption-desorption for pore textural structure. The Cu-BTC sample was also studied for $CO_2$ adsorption. The analysis results displayed that the sample synthesized at the condition of temperature: $120^{\circ}C$, synthesis time: 12 hours, pressure: 1 bar exhibited a good crystal structure with uniform size of octahedral particles. The BET data revealed a high surface area of 1741.7 $m^2g^{-1}$ and a pore volume of 0.7137 $cm^3g^{-1}$and exhibiteda maximum $CO_2$ adsorption capacity of 170 mg/g of the sorbent at $25^{\circ}C$.

  • PDF

Synthesis and Structure of $\eta^4$-1-Functionally Substituted-2,3,4,5-Tetraphenyl-1-Silacyclopentadienyl Complexes of Irontricarbonyl. Crystal Structure of ($\eta^4$-exo-Cyclopentadienyldicarbonyliron-endo-1-Methyl-2,3,4,5-Tetraphenyl-1-Silacyclopentadienyl)Tricarbonyliron

  • Jinkook Kang;Jaejung Ko;Youngkun Kong;Chang Hwan Kim;Myong Euy Lee;Patrick J. Carroll
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.542-546
    • /
    • 1992
  • New silicon-monosubstituted (${\eta}^4$-2,3,4,5-tetraphenyl-1-silacyclopentadiene)transi tion metal complexes are described. The new (silole-transition metal complex)Fe$(CO)_3$ was obtained from the reaction of silole-tansition metal complex and Fe$(CO)_5$. We have determined the crystal structure of (${\eta}^4$-exo-cyclopentadienyldicarbonyliron-endo-1-meth yl-2,3,4,5-tetraphenyl-1-silacyclopentadienyl)tric arbonyliron by using graphitemonochromated Mo-$K_{\alpha}radiation. The compound was crystallized in the monoclinic space group $P2_1$/c with a = 8.925(1), b = 18.689(3), c = 19.930(3) ${\AA}$, and ${\beta}$ = 102.02$(1)^{\circ}$. The iron moiety CpFe$(CO)_2$ on silicon is in an axal position. The (silole-transition metal complex) Fe$(CO)_3$ was also prepared through the reaction of (${\eta}^4$-1-chloro-2,3,4,5-tetraphenylsilacyclopentadiene) Fe$(CO)_3$ and metal complex nucleophile. The structure configuration was studied by conventional spectroscopy.

Structural characterization of ladder-type cadmium(II) citrate complex, (C3H12N2)[{Cd(H2O)(C6H5O7)}2]·6H2O

  • Kim, Chong-Hyeak;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.355-360
    • /
    • 2007
  • The title complex, $(C_3H_{12}N_2)[\{Cd(H_2O)(C_6H_5O_7)\}_2]{\cdot}6H_2O$, I, has been prepared and its structure characterized by FT-IR, EDS, elemental analysis, ICP-AES, and X-ray single crystallography. It is triclinic system, $P{\bar{1}}$ space group with a = 10.236(2), b = 11.318(2), c = $13.198(2){\AA}$, ${\alpha}=77.95(1)^{\circ}$, ${\beta}=68.10(1)^{\circ}$, ${\gamma}=78.12(1)^{\circ}$, V = $1373.5(3){\AA}^3$, Z = 2. Complex I has constituted by protonated 1,3-diaminopropane cations, citrate coordinated cadmium(II) anions, and free water molecules. The central cadmium atoms have a capped trigonal prism geometry by seven coordination with six oxygen atoms of three different citrate ligands and one water molecule. Citrate ligands are bridged to three different cadmium atoms. Each cadmium atom is linked by carboxylate and hydroxyl groups of citrate ligand to construct an one-dimensional ladder-type assembly structure. The polymeric crystal structure is stabilized by three-dimensional networks of the intermolecular O-H${\cdots}$O and N-H${\cdots}$O hydrogen-bonding interaction.

Ab Initio Molecular Dynamics with Born-Oppenheimer and Extended Lagrangian Methods Using Atom Centered Basis Functions

  • Schlegel, H. Bernhard
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.837-842
    • /
    • 2003
  • In ab initio molecular dynamics, whenever information about the potential energy surface is needed for integrating the equations of motion, it is computed “on the fly” using electronic structure calculations. For Born-Oppenheimer methods, the electronic structure calculations are converged, whereas in the extended Lagrangian approach the electronic structure is propagated along with the nuclei. Some recent advances for both approaches are discussed.

Structure Optimization of Solute Molecules via Free Energy Gradient Method

  • Nagaoka, Masataka
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.805-808
    • /
    • 2003
  • Fundamental ideas of the free energy gradient method are briefly reviewed with three applications: the stable structures of glycine and ammonia-water molecule pair in aqueous solution and the transition state (TS) structure of a Menshutkin reaction $NH_3 + CH_3Cl → CH_3NH_3^+ + Cl^-$ in aqueous solution, which is the first example of full TS optimization of all internal degrees of freedom.

TEM Study of Micropores Developed on Pitch-based Carbon Fiber

  • Ryu, Seung-Kon;Lu, Ji Gui
    • Carbon letters
    • /
    • v.7 no.2
    • /
    • pp.114-118
    • /
    • 2006
  • Isotropic pitch-based carbon fiber has been activated by steam diluted in nitrogen in order to characterize the microporosity. Especially, 40 wt% burn-off ACFs were prepared from different conditions to compare the pore structure and size. The ACFs were thinly sliced to investigate the inside pores by TEM and image analyzer. As expected, the adsorption characteristics of these ACFs were quite different from one another because of different pore structure and size. Most pores are not slit-shaped but rather round. Small round micropores become broad and irregular as increasing the activation time and temperature.

  • PDF

Effect of Chemical Structure on Properties of UV-Cured Polyurethane Acrylates

  • Kim, Tae-U;Heo, Jae-Ho;Kim, Han-Do
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1996.04a
    • /
    • pp.213-216
    • /
    • 1996
  • The relationship between the chemical structure and properties of UV-cured polyurethane acrylate films has been investigated. Studies have been made on the effects of the molecular weight of polyol, the types of polyol and diluents on the properties such as tensile properties and thermal properties. The glass transition temperature decreased with increasing the molecular weight of polyol. However storage modulus increased by using the diluent containing rigid structure and multifunctional acrylate monomers.

  • PDF