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In ab initio molecular dynamics, whenever information about the potential energy surface is needed for 
integrating the equations of motion, it is computed “on the fly” using electronic structure calculations. For 
Born-Oppenheimer methods, the electronic structure calculations are converged, whereas in the extended 
Lagrangian approach the electronic structure is propagated along with the nuclei. Some recent advances for 
both approaches are discussed.
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Introduction

As discussed in numerous chapters and monographs,1-16 
classical trajectories of molecules moving on potential energy 
surfaces provide a wealth of information about reactivity and 
dynamics. Because molecular dynamics calculations may 
involve extensive sampling of initial conditions and / or long 
simulation times, the molecular energy and its derivatives 
need to be computed frequently during the integration of the 
equations of motion. Traditionally, such studies have used 
analytic potential energy surfaces fitted to experimental and 
computational data. Potential energy surfaces obtained from 
well parameterized molecular mechanics calculations can be 
quite satisfactory for simulations near equilibrium. However, 
for reactive systems, specific potential energy surfaces must 
be devised for each unique system. Constructing potential 
energy surfaces by fitting to experimental data and / or ab 
initio molecular orbital energies can be both tedious and full 
of pitfalls.17,18 Alternatively, ab initio or semi-empirical 
molecular orbital calculations can be used directly to obtain 
the energies and derivatives as they are needed, thus avoiding 
the fitting process.19 This approach has been termed ab initio 
molecular dynamics (AIMD). The calculation of trajectories 
by AIMD methods is a comparatively new area19 and is 
expanding rapidly as affordability of computer power 
increases and more efficient software is developed.

Direct classical trajectory calculations can be grouped into 
two major categories: Born-Oppenheimer (BO) methods and 
extended Lagrangian (EL) methods. For the former, the 
electronic structure calculation is fully converged in the 
Born-Oppenheimer (clamped nuclei) approximation, each 
time that information about the potential energy surface is 
needed for a given nuclear configuration. In the extended 
Lagrangian approach, both the wavefunction and the nuclei 
are treated as dynamic variables. With an appropriate 
adjustment of the time scales for the dynamics of the 
wavefunction, both can be propagated satisfactorily with 
Lagrangian equations of motion, without the extra work of 
converging the wavefunction at each step. The resulting 

dynamics of the nuclei are comparable to that obtained with 
the Born-Oppenheimer approximation but at lower cost. The 
Car-Parrinello method is the archetypical example of this 
approach.20 The present overview is not intended to be a 
thorough review of the field, but is concerned only with 
some highlights of recent contributions to the development 
of AIMD methods from a chemical perspective.

Results and Discussion

Born-Oppenheimer methods. The simplest approach for 
Born-Oppenheimer dynamics uses electronic structure methods 
to calculate the energy and gradients directly. Methods such 
as velocity Verlet, fourth order Runge-Kutta, sixth order 
Adams-Moulton-Bashforth and related predictor-corrector 
algorithms21 are typical gradient-based methods used to 
integrate the equations of motion. Because this class of 
integrators requires fairly small time steps to determine the 
trajectories accurately, many thousands of electronic structure 
calculations may be needed, even for fairly fast reactions. 
Code for calculating classical trajectories has been incorpo­
rated into a number of widely distributed electronic structure 
packages (Dalton, DMol, Gamess, Gaussian, HyperChem, 
NWChem, etc.). Alternatively, a standard electronic structure 
package can be called as a subroutine from a classical 
trajectory code.

Analytic second derivatives of the energy (Hessians) can 
be calculated readily for a number of electronic structure 
methods, including Hartree-Fock (HF), multi-configuration 
SCF (MCSCF), density functional theory (DFT) and second 
order Moller-Plesset perturbation theory (MP2). The gradient 
and Hessian provide a local quadratic approximation to the 
potential energy surface and the equations of motion can be 
integrated on this local surface in closed form, allowing 
significantly larger steps between electronic structure calcu­
lations than for gradient-based methods. This approach was 
pioneered by Helgaker, Uggerud and Jensen in their studies 
of H2 + H and CH2OH t HCO+ + H2 at the MCSCF level of 
theory.22,23 Numerous systems have now been studied by
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Calculate the energy,

Figure 1. Hessian-based predictor-corrector algorithm for integrat­
ing trajectories on the Born-Oppenheimer surface.

these authors with the second order Hessian-based trajectory 
integration method, including C2H6+, H3O+ + NH3, CH2NH2+, 
NHNH2+, NH2NH3+ and HNO + HNO.24-30

Figure 1 illustrates a Hessian-based predictor-corrector 
method that we developed a few years ago.31-33 Given a 
Hessian from an electronic structure calculation, a predictor 
step is taken on the local quadratic surface. The Hessian is 
then recalculated and a fifth order polynomial or a rational 
function is fitted to the energies, gradients and Hessians at 
the beginning and end points of this predictor step. The 
Bulrisch-Stoer algorithm21 is used to re-integrate the 
trajectory on the fitted surface to yield a corrector step (see 
Figure 2). The process is repeated for each step. Since the 
Hessian at the end of the last step is used for the next 
predictor step, the electronic structure work is the same as 
for the second order Hessian-based method (z.e. one Hessian 
calculation per step). As shown in Figure 3, the error in the 
conservation of energy for the Hessian-based predictor­
corrector method is three orders of magnitude lower than for 
the second order Hessian-based method, permitting a ten­
fold increase in the step size without loss of accuracy in the 
energy conservation. This means an order of magnitude 
increase in the efficiency of the AIMD calculation, since the 
number of electronic structure calculations for a given 
trajectory is reduced by a factor of ten.

Algorithms for geometry optimization use updating formulas 
to maintain and improve an estimated Hessian during an 
optimization.34,35 This approach can be applied to our 
Hessian-based predictor-corrector method for integrating 
trajectories. We have found that Bofill’s formula36 can be 
used to update the Hessian for 5-10 steps before it needs to 
be recalculated. As shown in Figure 4, this speeds up the 
trajectory integration by a factor of 3 or more for systems 
containing 4 to 6 heavy atoms. With updating, the step size 
needs to be only slightly smaller to maintain the same energy 
conservation as without updating. We have used the

Logarithm of mass-weighted step size (amu1/2bohr)

Figure 3. Comparison of the error in the conservation of energy 
versus step size for trajectories integrated with the second order 
Hessian-based method (squares) and the Hessian-based predictor­
corrector method with a fifth order polynomial (circles) or a 
rational function (triangles) for the corrector step (slopes of the 
least squares fits in parenthesis).

Number of Hessian 니pdates

Figure 4. Relative cpu times as a function of the number of updates 
for Hessian-based Born-Oppenheimer trajectory calculations.

Hessian-based predictor-corrector method (with and without 
updating) in studies of H2CO T H2 + CO, F + C2H4 T 
C2H3F, C2H2O2 (glyoxal) T H2 + 2 CO & H2CO + CO, 
C2N4H2 (s-tetrazine) T N2 + 2 HCN and HXCO T HX + 
CO.31。37-46

Collins has developed a novel method for growing potential 
energy surfaces for dynamics by using trajectories to 
determine where additional electronic structure calculations 
are needed.47-53 An initial approximation to the potential 
energy surface is constructed with a modest number of 

Figure 2. Details of the Hessian-based predictor-corrector algorithm for integrating classical trajectories.
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energy, gradient and Hessian calculations along the reaction 
path. This local information is linked with distance weighted 
interpolants to yield a global surface. As more trajectories 
are run, some explore regions of the surface farther away 
from the existing data points. Additional electronic structure 
calculations are performed in these regions to improve the 
accuracy of the interpolated surface. The process continues 
until the desired dynamical properties become stable with 
respect to improvements in the surface. This approach has 
been used by Collins and co-workers to study a number of 
systems, including OH + H2, N + H3+, BH+ + H2 and triazine 
dissociation.54-60

Extended Lagrangian methods. Converging wavefunc­
tions for every time step in a trajectory calculation can be 
costly. Since relatively small time steps are used, the change 
in the wavefunction may be small enough so that it can be 
treated by suitable equations of motion. In 1985 Car and 
Parrinello20 outlined such an approach for ab initio molec­
ular dynamics (for reviews, see Ref. 61-63). Use of the time 
dependent Schrodinger equation was impractical, since it 
would necessitate very small time steps. Instead, they 
constructed an extended Lagrangian to obtain classical-like 
equations of motion for the wavefunction:

L = 1/2Tr[ VT MV] +  ̂xj |dQ./혜 2d r - E(R0)

- £*(j S ©dr -如 ⑴

where R, V and M are the nuclear positions, velocities and 
masses,卩 is the fictitious electronic mass, r are the elec­
tronic coordinates and A# are Lagrangian multipliers to 
ensure that the orbitals remain orthonormal. The coefficients 
of the molecular orbitals,奴 are expanded in a plane wave 
basis.64,65 This simplifies many of the integrals and facilitates 
applications to condensed matter. However, a very large 
number of plane waves is needed and the types of density 
functionals that can be used easily is limited (e.g. hybrid 
functionals are expensive since the Hartree-Fock exchange is 
difficult to calculate). Furthermore, pseudopotentials must 
be used to replace core electrons, since these cannot be 
describe well by reasonable sized plane wave basis sets. 
Even with these limitations, the Car-Parrinello approach and 
its variants have seen extensive usage in the physics 
community.66

Molecular electronic structure calculations in chemistry 
are usually carried out with atom centered basis functions 
(e.g. gaussians) rather than plane waves.67-70 Since atom 
centered basis functions are automatically positioned where 
the density is the greatest, far fewer functions are needed 
than plane waves. Fast integral packages are available for 
gaussian basis functions and hybrid density functionals are 
handled readily. Because the density matrix becomes sparse 
for large molecules, Hartree-Fock and density functional 
calculations can be made to scale linearly with molecular 
size.71-73 These features, coupled with the extensive experi­
ence that the chemistry community has with levels of 
theory and basis sets, lead us to develop the atom-centered 

density matrix propagation (ADMP) method for molecular 
dynamics.74-76

The equations for propagation of the density matrix are 
simplest in an orthonormal basis. In many ways, this is 
similar to density matrix search methods for calculating 
electronic energies.77 In the ADMP approach, the extended 
Lagrangian for the system is

L = 1/2Tr[ VT MV] + 1/2 Tr[(卩1/4 W^1/4 )2 ]

-E(R,P) - Tr[A(PP - P)] (2)

where P, W and 卩 are the density matrix, the density matrix 
velocity and the fictitious mass matrix for the electronic 
degrees of freedom. Constraints on the total number of 
electrons and the idempotency are imposed using the 
Lagrangian multiplier matrix A. The energy is calculated 
using the McWeeny purification of the density,78 P =3 P2 - 
2 P3. The Euler-Lagrange equations of motion are

M d2R/dt2 = - dE/dR|P；

R d2P/dt2 = - [dE/dP|R + AP + PA - A] (3)

These can be integrated using the velocity Verlet algorithm,64,79

P.+1 = P. + Wi At - S1/2 [dE(R,Pi)/dP|R + AP. + PiA. - A.] 
x 广 At2/2

Wi+1/2 = Wi - r1/2 [dE(R,Pi)/dP|R + AB + PA - Ai]
x r-1/2 At/2 = [Pi+1-PJ/At

Wi+1 = W+1/2 - r1/2 [dE(Ri+1,Pi+1)/dP|R + Ai+1Pi+1

+ Pi+1A 汁1 - Ai+1]冋项2 At/2 (4)

A simple iterative scheme is used to determine the 
Lagrangian multipliers so that Pi+1 and Wi+1 satisfy the 
idempotency constraints.74,75

Pi+1 — Pi+1 + 广[Pi TPi + (I-Pi)T(I-Pi)]『2 T
=R1/2 [ P ,+1-P,+1] R1/2

Wi+1 — Wi+1 + rT2 [P,+1TP,+1 + (I-P,+1)T(I-P,+1)] rT/2 T
=R1/2 [ W ,+1-W,+1] R1/2 (5)

where W ,+1 = P!+1W!+1(I-P,+1) + P!+1W!+1(I-P!+1). In calcu­
lating dE/dR|P we need to take into account that P is not 
converged and that U, the transformation between the non- 
orthogonal atomic orbital basis and the orthonormal basis, 
depends on R. This leads to a somewhat more complicated 
expression than used for gradients of converged SCF 
energies.

dE/dR|P = Tr[U-t dh'/dR|P U-1 P + U-t dG'(P )/HR|p U-1 P ]
-Tr[F dU/dR U-1 P + P U-t dU/dR F] + dFNVdR

- ~ ~ ~
=Tr[dh/dR\p P' + dG'(P ')/dR|p P ']
-Tr[F' U-1 dU/dR P' + P' dU/dR U-t F'] + d PWdR

(6)
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Figure 5. Ratios of estimated timings for Born-Oppenheimer 
versus ADMP trajectory calculations on linear hydrocarbons, 
CnH2n+2, computed at HF/6-31G(d) (top) and B3LYP/6-31G(d) 
(bottom) with the Hessian-based predictor-corrector method (diamonds), 
Hessian-based predictor-corrector with updating (squares), gradient 
based velocity Verlet (triangles) and ADMP (diamonds).

where the primed quantities are integrals in the atomic 
orbital basis and U‘ U = S'. An important factor in the 
viability of this approach is that we have been able to obtain 
the derivative of the transformation matrix in closed form for 
Cholesky orthonormalization.74

(dU/dR U-1)v = (U-‘ dS'/dR U-1)v for 卩 < v,
=1/2 (U-t dS'/dR U-1)v for 卩，=V,
=0 for 卩，> v. (7)

Unlike earlier approaches to propagating Hartree-Fock and 
generalized valence bond wavefunctions.80-83 the ADMP 
method shows excellent energy conservation without 
thermostats and does not require periodic re-convergence of 
the electronic structure.

To estimate the relative timing of the BO and ADMP 
methods for molecular dynamics, we considered a series of 
linear hydrocarbons (see Figure 5). One Fock matrix and one 
gradient evaluation per time step are needed in the ADMP 
approach. This is used as the reference for all the other 
methods. BO method with velocity Verlet uses approximately 
the same time step as ADMP but needs an average of 10 
Fock matrix evaluations to converge the wavefunction. The 
Hessian-based trajectory integration methods can employ 
much larger time steps and still maintain the same level of 

energy conservation or better. When updating is used, the 
cost of calculating the Hessian is spread out over a number 
of steps thereby reducing the average cost per step. As seen 
in Figure 5, this approach is most efficient for small 
molecules and for cases that require more accurate dynamics. 
The ADMP approach wins for larger systems and shows its 
advantage even earlier for hybrid DFT methods.76

The ADMP method has some of the specific advantages 
and greater flexibility when compared to the Car-Parrinello 
approach. All electrons can be treated explicitly and pseudo­
potentials are not required. Any density functional, including 
hybrid functionals, can be employed. Smaller fictitious 
masses can be used and good adiabaticity can be maintained 
without thermostats.74-76 For ionic systems, vibrational 
frequencies calculated by the plane-wave Car-Parrinello 
method show a disturbing dependence on the fictitious 
electronic mass;84 however, the ADMP method is free from 
this problem.76 The ADMP trajectories compare very well 
with those computed by BO methods.74 Specifically, for 
CH2O T H2 + CO and C2H2O2 T H2 + 2 CO, the ADMP 
trajectories give product translational, rotational and 
vibrational energy distributions that are very close to the BO 
results.76 The ADMP is being extended to QM/MM treat­
ments for biological systems, and has been used to study the 
solvation of excess protons in water clusters and hydroxyl­
stretch red shifts in chloride water clusters.76

Summary

Recent advances in computer hardware and software are 
making the applications of ab initio molecular dynamic 
increasingly more practical. Born-Oppenheimer methods 
offer the advantage of propagating molecules on well defined 
potential energy surfaces. Extended Lagrangian methods 
yield very similar dynamics at a reduced cost. The coming 
years will bring a rapid increase in the number and types of 
systems that are studied with these approaches.
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