• Title/Summary/Keyword: Chemical properties

Search Result 14,304, Processing Time 0.045 seconds

Mechanical Properties of Thermoplastic Composite Reinforced Porous Carbon

  • Hwang, Taek-Sung;Park, Jin-Won;Song, Hae-Young;Hwang, Eui-Hwan
    • Carbon letters
    • /
    • v.1 no.2
    • /
    • pp.87-90
    • /
    • 2000
  • Porous carbon from charcoal filled polypropylene composites were prepared and their mechanical properties were evaluated. In preparing the composites, crosslinking agent (sodium benzonate) were used in order to improve the bonding force between matrix and fillers. In this study, the effects of charcoal powder and sodium benzonate concentration on the mechanical properties and interface phenomena on the composites were evaluated. The mechanical properties of composites increased progressively with the decrease of filler loading. In the case of addition of the crosslinking agent into the composite, the mechanical properties were increased and showed maximum value at the 3 wt% concentration of sodium benzonate. According to the result of the TGA, the weight loss of composite according to crosslinking agent was not observed and initial thermal degradation temperature of composite reinforced charcoal was located at $390^{\circ}C$.

  • PDF

Influence of Acetylation on the Antimicrobial Properties of Chitosan Non-Woven Fabrics

  • Shin, Hye Kyoung;Park, Mira;Kim, Hak-Yong;Jin, Fan-Long;Choi, Heung Soap;Kim, Keziah H.;Kim, David S.;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2441-2445
    • /
    • 2013
  • Chitosan non-woven fabrics were acetylated to improve their antimicrobial properties. The active chlorine content, antimicrobial properties, storage stability, and surface properties of acetylated chitosan non-woven fabrics were investigated. The active chlorine content of the fabrics increased upon reduction of the degree of the acetylation or increase in sodium hypochlorite concentration. Acetylated chitosan non-woven fabrics showed powerful antimicrobial activity by efficiently killing Escherichia coli and forming a growth inhibition zone for Staphylococcus aureus. Furthermore, scanning electron microscopy observations demonstrated that the acetylated chitosan non-woven fabrics were not damaged in sodium hypochlorite solution.

Optimum Condition on Overlap of Physical Properties of HIPS Samples

  • Son, Jung-Mo
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.1
    • /
    • pp.52-57
    • /
    • 1991
  • To find optimum conditions necessary in converting physical properties of any resin into those of others, eleven kinds of HIPS (High-Impact Polystyrene) resins were prepared. First physical properties of eleven samples divided into three groups are analyzed by a torque rheometer (named Plasti-Corder, Model No.: PLD 651) and GPC (Gel Permeation Chromatography), and then optimum conditions on conversion among samples are obtained by calculation from computer simulation so that any sample subjected to each group can show physical properties of other samples in its group. Even though the kind of plasticizer of any sample is different with others in its group, once optimum conditions on conversion among samples are met, it is found that physical properties of any sample are identical or similar to those of others in each group.

The Effect of Comonomer Type and Content on the Properties of Ziegler-Natta Bimodal High-Density Polyethylene (공단량체의 종류 및 조성이 지글러-나타 중합된 이중 분자량 분포 고밀도 폴리에틸렌의 물성에 미치는 영향)

  • Meng, Weijuan;Li, Hongbo;Li, Jianwei;Chen, Biaohua
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.673-679
    • /
    • 2011
  • Bimodal high-density polyethylenes with different comonomer type and content were synthesized by polymerization of ethylene using Ziegler-Natta catalyst. Their structure and properties were studied using GPC, NMR, DSC and tensile test. It was found that ethylene/1-hexene copolymer exhibits higher tensile strength and elongation at break than that of ethylene/1-butylene copolymer with similar comonomer content. The molecular weight decreases as the comonomer content of the polymer increases. Short chain branching affects the crystallinity and thus the morphology and consequently the mechanical properties of the corresponding bimodal high-density polyethylenes. After SSA treated, the multiple endothermic peaks were observed. Multiple endothermic peaks are mainly attributed to the heterogeneity of ethylene sequence length and lamellar thickness. The difference of broadness index indicates that SCB distribution of polyethylene containing higher comonomer content has improved uniformity.

Encapsulation of 2,4-Dihydroxybenzophenone into Dodecylbenzenesulfonate Modified Layered Double Hydroxide for UV Absorption Properties

  • Li, Shifeng;Shen, Yanming;Liu, Dongbin;Fan, Lihui;Wu, Keke
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.392-396
    • /
    • 2014
  • New organic-inorganic composite of 2,4-dihydroxybenzophenone (BP-1) encapsulation into dodecylbenzenesulfonate (DBS) modified layered double hydroxide (LDH) was successfully prepared. The surface, structural, thermal and absorption properties of the BP-1/DBS-LDH nanohybrid was characterized by BET analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TG) and diffuse reflectance UV-Vis absorbance spectra (DRUV-vis). The interlayer configuration of composite and the adsorption mechanism of BP-1 on MgAl-DBS-LDH were discussed. It was suspected that DBS anions located in the form of monolayer arrangement with a $75^{\circ}$ anti parallel angle between dodecylbenzenesulfonate chain axis. The diffuse reflectance UV-Vis absorbance results revealed that the UV absorbing wavelength of BP-1/DBS-LDH evidently extends to about 400 nm, which shows that the BP-1/DBS-LDH has the potential application as a UV absorber.

Improvement of Mechanical Interfacial Properties of Silica/Rubber Composites by Silane Coupling Agent Treatment (실란 커플링제를 이용한 실리카/고무 복합재료의 기계적 계면 물성의 향상)

  • Park, Soo-Jin;Cho, Ki-Sook;Lee, Jae-Rock
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.121-124
    • /
    • 2001
  • Surface-modified silica holds considerable promise in the development of advanced materials for good mechanical properties and stability. In this work, the surface and mechanical interfacial properties of silicas treated with silane coupling agents, such as Y-methacryloxy propyl trimethoxy silane (MPS). Y-glycidoxy propyl trimethoxy silane (GPS), and Y-mercapto propyl trimethoxy silane (MCPS), are investigated. The effect of silane surface treatments of silica on the surface properties and surface energetics are studied in terms of surface functional values and contact angle measurements. And their mechanical interfacial properties of the silica/rubber composites are studied by the composite tearing energy ($G_{IIIC}$). As a result. the mechanical interfacial properties are improved in the case of silane-treated composites compared with untreated one. It reveals that the functional groups on silica surface by silane surface treatments play an important role in improving the degree of adhesion at interfaces in a silica-filled rubber system.

  • PDF

Synthesis, Structure and Thermal Properties of Bifurazano[3,4-b:3',4'-f]furoxano[3'',4''-d]oxacyclohetpatriene (BFFO)

  • Zhou, Yanshui;Xu, Kangzhen;Wang, Bozhou;Zhang, Hang;Qiu, Qianqian;Zhao, Fengqi
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3317-3320
    • /
    • 2012
  • A novel energetic compound, bifurazano[3,4-b:3',4'-f]furoxano[3'',4''-d] oxacyclohetpatriene (BFFO), was synthesized through special etherification and its structure was determined by single crystal X-ray diffraction. The crystal of $BFFO{\cdot}H_2O$ is monoclinic, space group P2(1)/c with crystal parameters of a = $9.324(4){\AA}$, b = $9.727(4){\AA}$, c = $10.391(4){\AA}$, ${\beta}=106.305(6)^{\circ}$, V = $904.5(6){\AA}^3$, Z = 4, ${\mu}=0.17mm^{-1}$, F(000) = 512 and $D_c=1.866g\;cm^{-3}$. Spectroscopic properties and thermal behaviors of BFFO were studied. BFFO presents good detonation properties.

Synthesis of Poly(epoxy-imide)-Nano Silica Hybrid Film via CS Sol-gel Process and Their Dielectric Properties (CS졸을 이용한 Poly(epoxy-imide)-나노 Silica 하이브리드 필름의 합성과 유전특성)

  • Han, Se-Won;Han, Dong-Hee;Kang, Dong-Pil;Kang, Young-Taec
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.35-40
    • /
    • 2007
  • The new PEI(poly(epoxy-imide))-nano Silica film has been synthesized via in situ CS sol process, and the chemical bonding and microstructure of nano silica dispersed in resin were examined by FT-IR, TAG and SEM. The dielectric properties of these hybrid films over a given temperature and frequency ranges have been studied in a point of view of stable chemical bonding of nano Silica filler. The results from IR spectra and SEM photograph indicated that PEI-Silica hybrid film prepared with nano CS sol process has been synthesized in uniform and chemical bonding. The decrease property of dielectric constant with CS content, tangent loss consistent of given frequency and temperature has been explained in terms of the chain movement of polymer through chemical bonging and size effect of nano silica. The new PEI-CS sol hybrid film with such stable chemical and dielectric properties was expected to be used as a high functional coating application in ET, IT and electric power products.

Properties of Carbon Black Used as Catalysts for Methane Decomposition

  • Kim, Myung-Soo;Han, Ling;Dai, Shuangye;Park, Hong-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.199-206
    • /
    • 2006
  • Direct decomposition of methane over three types of carbon black (N330-p, N330-f, and HI-900L) was carried out in a fluidized bed quartz reactor. Properties of carbon black before and after reaction were measured and found to be related with surface structure and weight gain. For N330-p and N330-f, some carbon deposit on the surface was considered to be the reason for the increase of BET surface area and pore volume with weight gain. Carbon deposits on the surface and the conglutination of some aggregates may explain the slight increase of particle size. Properties of HI-900L changed much more significantly with weight gain. It is supposed that the increase of aggregate size of HI-900L were due to some unknown oily components. The corresponding agglomeration might be the reason for the decrease of BET surface area with weight gain, as compared with the increase of that for the case of N330 black.

Preparation and Characterization of Advanced Organic Polymer - Inorganic Composite Gel Electrolyte for Dye-sensitized Solar Cells (염료 감응 태양전지를 위한 고급 유기 고분자 - 무기 복합 겔형 전해질의 제조와 특성분석)

  • Akhtar, M. Shaheer;Park, Jung-Guen;Kim, Ui-Yeon;Lee, Hyun-Choel;Yang, O-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.350-354
    • /
    • 2009
  • In this work, polymer - inorganic composites have prepared using polymer such as polyethylene glycol (PEG)/poly (methyl methacrylate, PMMA) and inorganic nanofillers materials such as TiO2 nanotubes (TiNTs)/carbon nanotubes (CNTs). The extensive structural, morphological and ionic properties revealed that the high surface area and tubular feature of nanofillers improved the interaction and cross-linking to polymer matrix which is significantly enhanced the ionic conductivity and electrical properties of composite electrolytes. Comparably high conversion efficiency ~4.5% has been observed by using the newly prepared PEG-TiNTs composite solid electrolyte as compared with PMMA-CNTs electrolyte based DSSCs (~3%). The detailed comparative properties would be discussed in term of their structural, morphology, ionic and photovoltaic properties.

  • PDF